一、线性筛法
众所周知。。。线性筛就是在O(n)的时间里找出所有素数的方法
code:
void get_prime(int N){
int i, j, k;
memset(Flag, sizeof(Flag), );
for (i = ; i <= N; ++i){
if (!Flag[i])
p[++tot] = i;
for (j = ; j <= tot; ++j){
if ((k = i * p[j]) > N) break;
Flag[k] = ;
if (!(i % p[j])) break;
}
}
}
为什么这是线性的呢?
因为程序中利用了性质"每个合数必有一个最小素因子",于是每个合数仅被它的最小素因子筛去正好一次,所以是线性时间。
每个合数仅被它的最小素因子筛去正好一次的体现在于:if (!(i % p[j])) break;
如果不理解的话可以手动算一下i = 2 to 15的情况就可以明白啦!
(p.s. 其实准确的复杂度是O(n * loglogn)的,但是loglogn趋近于一个常数)
二、利用线性筛法求欧拉函数
欧拉函数phi(n)的值定义为1到n中与n互质的数的个数。
如phi(1) = 1, phi(2) = 1, phi(3) = 2, phi(4) = 2, phi(5) = 4, phi(6) = 2...
那么如何利用线性筛来求呢?
我们需要知道以下性质(证略):
(1)若n为质数,phi(n) = n - 1;
(2)若(n % a == 0 && (n / a) % a == 0) 则有:phi(n) = phi(n / a) * a;
(3)若(n % a == 0 && (n / a) % a != 0) 则有:phi(n) = phi(n / a) * (a - 1);
于是就可以做了,code:
void get_phi(int N){
int i, j, k;
memset(Flag, sizeof(Flag), );
phi[] = ;
for (i = ; i <= N; ++i){
if (!Flag[i])
p[++tot] = i, phi[i] = i - ;
for (j = ; j <= tot; ++j){
if ((k = i * p[j]) > N) break;
Flag[k] = ;
if (!(i % p[j])){
phi[k] = phi[i] * p[j];
break;
}else
phi[k] = phi[i] * (p[j] - );
}
}
}
三、线性筛的其他应用 --计算Mobius函数μ[n]
首先我们定义μ[d]:
(1)若d = 1,那么μ[d] = 1
(2)若d = p1 * p2 * … * pr (r个不同质数,且次数都唯一)μ[d] = (-1) ^ r
(3)其余 μ[d] = 0
可以得到性质:
∑(d|n) μ[d] = 0 (n > 1)
而n = 1时,上式等于1
Mobius函数在积性函数的计算中非常重要,此处略过不讲。
利用上面提到的性质就可以求μ[n]了,code:
void get_u(int N){
int i, j, k;
memset(Flag, sizeof(Flag), );
u[] = ;
for (i = ; i <= N; ++i){
if (!Flag[i])
p[++tot] = i, u[i] = -;
for (j = ; j <= tot; ++j){
if ((k = i * p[j]) > N) break;
Flag[k] = ;
if (!(i % p[j])){
u[k] = ;
break;
} else u[k] = -u[i];
}
}
}