The following code runs on my desktop (Mint 17) with no issues, but when I try to run it on a RPi running Raspbian I get the above mentioned error message at line 58. The only thing I can think that's causing it is the Python version:
下面的代码在我的桌面上运行(Mint 17),没有任何问题,但是当我尝试在运行Raspbian的RPi上运行它时,我得到了上面提到的第58行错误消息。我能想到的唯一原因是Python版本:
Mint uses Python 2.7.6
薄荷使用Python 2.7.6
$ python -V
Python 2.7.6
The RPi uses 2.7.3, but I've installed 2.7.8 and aliased it
RPi使用了2.7.3,但我安装了2.7.8,并将其修改了。
$ python -V
Python 2.7.3
$ alias python=/usr/local/bin/python2.7
$ python -V
Python 2.7.8
I know there's similar questions on here, but the issue seems to be code related in those cases. I know this code's OK, so it must be an environment issue, right?
我知道这里有类似的问题,但在这些情况下,问题似乎是相关的。我知道这段代码没问题,所以一定是环境问题,对吧?
Here's the program anyway:
这是程序无论如何:
#!/usr/bin/env python
# Determines if a set of three images contains at least one person
# Images are taken in quick succession, the 2nd and 3rd are diff images of the first
# Adapted from sample file: /opencv/samples/python2/peopledetect.py
#
# Example: ./pdTriple.py IMG_000.JPG IMG_001.JPG IMG_002.JPG
import numpy as np
import cv2
import sys
from glob import glob
import itertools as it
from array import *
def inside(r, q):
rx, ry, rw, rh = r
qx, qy, qw, qh = q
return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh
def draw_detections(img, rects, thickness = 1):
for x, y, w, h in rects:
# the HOG detector returns slightly larger rectangles than the real objects.
# so we slightly shrink the rectangles to get a nicer output.
pad_w, pad_h = int(0.15*w), int(0.05*h)
cv2.rectangle(img, (x+pad_w, y+pad_h), (x+w-pad_w, y+h-pad_h), (0, 255, 0), thickness)
if __name__ == '__main__':
hog = cv2.HOGDescriptor()
hog.setSVMDetector( cv2.HOGDescriptor_getDefaultPeopleDetector() )
count = 0
results = np.array([0,0,0])
for fn in it.chain(*map(glob, sys.argv[1:])):
print fn, ' - ',
try:
img = cv2.imread(fn)
if img is None:
print 'Failed to load image file:', fn
continue
except:
print 'loading error'
continue
# modify winstride and padding values to optimise results
found, w = hog.detectMultiScale(img, winStride=(4,4), padding=(8,8), scale=1.05)
found_filtered = []
for ri, r in enumerate(found):
for qi, q in enumerate(found):
if ri != qi and inside(r, q):uname # errors here
break
else:
found_filtered.append(r)
print '%d found (%d filtered)' % (len(found_filtered), len(found))
results[count] = len(found_filtered)
count += 1
if np.all(results>0):
print '\n--------------', fn, 'contains a person --------------\n'
1 个解决方案
#1
0
if you delete 'uname', it'll work;
如果你删除了“uname”,它就会起作用;
for ri, r in enumerate(found):
for qi, q in enumerate(found):
if ri != qi and inside(r, q): # errors here
break
else:
found_filtered.append(r)
#1
0
if you delete 'uname', it'll work;
如果你删除了“uname”,它就会起作用;
for ri, r in enumerate(found):
for qi, q in enumerate(found):
if ri != qi and inside(r, q): # errors here
break
else:
found_filtered.append(r)