I need to read one excel file and perform some computations on each sheet. Basically, it needs to drop rows if the column date is not "today".
我需要阅读一个excel文件,并对每个表执行一些计算。基本上,如果列日期不是“today”,它需要删除行。
I got this code so far:
到目前为止,我得到了这个代码:
import datetime import pandas as pd
导入datetime作为pd导入熊猫
'''
Parsing main excel sheet to save transactions != today's date
'''
mainSource = pd.ExcelFile('path/to/file.xlsx')
dfs = {sheet_name: mainSource.parse(sheet_name)
for sheet_name in mainSource.sheet_names }
for i in dfs:
now = datetime.date.today();
dfs = dfs.drop(dfs.columns[6].dt.year != now, axis = 1); # It is the 6th column
if datetime.time()<datetime.time(11,0,0,0):
dfs.to_excel(r'path\to\outpt\test\'+str(i)+now+'H12.xlsx', index=False); #Save as sheetname+timestamp+textstring
else:
dfs.to_excel(r'path\to\output\'+str(i)+now+'H16.xlsx', index=False)
When running the script, I am getting the following error:
运行脚本时,我得到以下错误:
dfs = dfs.drop(...):
AttributeError: 'dict' object has no attribute 'drop'
Any suggestions?
有什么建议吗?
Thanks!
谢谢!
1 个解决方案
#1
1
I think you need replace i
to dfs[i]
, because dfs
is dict of DataFrames
:
我认为需要将I替换为dfs[I],因为dfs是DataFrames的dict类型:
df1 = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6],
'C':['10-05-2011','10-05-2012','10-10-2016']})
df1.C = pd.to_datetime(df1.C)
print (df1)
A B C
0 1 4 2011-10-05
1 2 5 2012-10-05
2 3 6 2016-10-10
df2 = pd.DataFrame({'A':[3,5,7],
'B':[9,3,4],
'C':['08-05-2013','08-05-2012','10-10-2016']})
df2.C = pd.to_datetime(df2.C)
print (df2)
A B C
0 3 9 2013-08-05
1 5 3 2012-08-05
2 7 4 2016-10-10
names = ['a','b']
dfs = {names[i]:x for i, x in enumerate([df1,df2])}
print (dfs)
{'a': A B C
0 1 4 2011-10-05
1 2 5 2012-10-05
2 3 6 2016-10-10, 'b': A B C
0 3 9 2013-08-05
1 5 3 2012-08-05
2 7 4 2016-10-10}
Remove all rows by boolean indexing
:
通过布尔索引删除所有行:
for i in dfs:
now = pd.datetime.today().date();
print (now)
#select 3.column, in real data replace to 5
mask = dfs[i].iloc[:,2].dt.date == now
print (mask)
df = dfs[i][mask]
print (df)
2016-10-10
0 False
1 False
2 True
Name: C, dtype: bool
A B C
2 3 6 2016-10-10
2016-10-10
0 False
1 False
2 True
Name: C, dtype: bool
A B C
2 7 4 2016-10-10
if datetime.time()<datetime.time(11,0,0,0):
df.to_excel(r'path\to\outpt\test\'+str(i)+now+'H12.xlsx', index=False);
else:
df.to_excel(r'path\to\output\'+str(i)+now+'H16.xlsx', index=False)
#1
1
I think you need replace i
to dfs[i]
, because dfs
is dict of DataFrames
:
我认为需要将I替换为dfs[I],因为dfs是DataFrames的dict类型:
df1 = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6],
'C':['10-05-2011','10-05-2012','10-10-2016']})
df1.C = pd.to_datetime(df1.C)
print (df1)
A B C
0 1 4 2011-10-05
1 2 5 2012-10-05
2 3 6 2016-10-10
df2 = pd.DataFrame({'A':[3,5,7],
'B':[9,3,4],
'C':['08-05-2013','08-05-2012','10-10-2016']})
df2.C = pd.to_datetime(df2.C)
print (df2)
A B C
0 3 9 2013-08-05
1 5 3 2012-08-05
2 7 4 2016-10-10
names = ['a','b']
dfs = {names[i]:x for i, x in enumerate([df1,df2])}
print (dfs)
{'a': A B C
0 1 4 2011-10-05
1 2 5 2012-10-05
2 3 6 2016-10-10, 'b': A B C
0 3 9 2013-08-05
1 5 3 2012-08-05
2 7 4 2016-10-10}
Remove all rows by boolean indexing
:
通过布尔索引删除所有行:
for i in dfs:
now = pd.datetime.today().date();
print (now)
#select 3.column, in real data replace to 5
mask = dfs[i].iloc[:,2].dt.date == now
print (mask)
df = dfs[i][mask]
print (df)
2016-10-10
0 False
1 False
2 True
Name: C, dtype: bool
A B C
2 3 6 2016-10-10
2016-10-10
0 False
1 False
2 True
Name: C, dtype: bool
A B C
2 7 4 2016-10-10
if datetime.time()<datetime.time(11,0,0,0):
df.to_excel(r'path\to\outpt\test\'+str(i)+now+'H12.xlsx', index=False);
else:
df.to_excel(r'path\to\output\'+str(i)+now+'H16.xlsx', index=False)