My dataframe looks like this
我的dataframe是这样的
Datetime <- c("2015-09-29AM", "2015-09-29PM" ,"2015-09-30AM", "2015-09-30PM", "2015-10-01AM" ,"2015-10-01PM"
,"2015-10-02AM", "2015-10-02PM" ,"2015-10-03AM" ,"2015-10-03PM", "2015-10-04AM" ,"2015-10-04PM"
,"2015-10-05AM", "2015-10-05PM", "2015-10-06AM" ,"2015-10-06PM")
FailRate_M1 <- c(0.0000000,0.0000000,0.9615385,0.9009009,0.0000000,1.4492754,1.5151515,0.0000000,0.8849558,0.0000000,4.4444444,0.7142857
,0.0000000,10.3448276,0.0000000,0.0000000)
df1 <- data.frame(Datetime,FailRate_M1)
Now i use the qic function from the "qichart" package and obtain this plot.
现在我使用来自“qichart”包的qic函数来获取这个图。
library(qicharts)
qic(FailRate_M1,
x = Datetime,
data = df1,
chart = 'c',
runvals = TRUE,
cex = 1.2,
main = 'Measurement Fail Rate (M1)',
ylab = 'MFR (%)',
xlab = 'Datetime')
Can this plot be plotted using ggplot? or can it be converted to a ggplot format?. Kindly please provide your inputs and help me in solving this problem.
可以用ggplot绘图吗?还是可以转换成ggplot格式?请提供您的意见,并帮助我解决这个问题。
There are many functions that have thier own customized way of plotting but I would ideally like to see if we could convert those plots to ggplot.
有很多函数都有自己定制的绘图方式,但我想看看能否将这些绘图转换成ggplot。
I tried to do the following
我试着做下面的事情
p1<- qic(FailRate_M1,
x = Datetime,
data = df1,
chart = 'c',
runvals = TRUE,
cex = 1.2,
main = 'Measurement Fail Rate (M1)',
ylab = 'MFR (%)',
xlab = 'Datetime')
and then I try to use ggplot
然后我尝试使用ggplot
library(ggplot2)
sp <- ggplot(p1, aes(x = Datetime, y = FailRate_M1))+
geom_point(size=2.5)
sp
and get the following error "Error: ggplot2 doesn't know how to deal with data of class qic"
得到下面的错误"错误:ggplot2不知道如何处理类qic的数据"
2 个解决方案
#1
1
I am not familiar with what what qicharts::qic
is doing, but the following mimics the core elements of the graphic with ggplot2
:
我不太了解qicharts::qic在做什么,但是下面的例子模仿了图形的核心元素ggplot2:
library(ggplot2)
my_value <- min(df1$FailRate_M1) + 6
ggplot(df1, aes(x = Datetime, y = FailRate_M1, group = 1)) +
geom_line(color = "steelblue", size = 1) +
geom_point(color = "lightgreen", size = 3) +
geom_point(data = subset(df1, FailRate_M1 >= 10), color = "red", size = 4) +
geom_hline(aes(yintercept = c(1.3, 4.8))) +
geom_hline(aes(yintercept = my_value), linetype = 2) +
labs(title = "Measurement Fail Rate (M1)",
y = "MFR (%)")
A couple notes to aid your understanding:
以下是一些帮助你理解的笔记:
- When
x
is a factor, you need to useaes(group = 1)
so thatggplot()
knows the data "belong together" and should be "connected". In this case, with a line. - 当x是一个因子时,您需要使用aes(group = 1),以便ggplot()知道数据“属于一起”,并且应该“连接”。在这种情况下,用一条线。
- Notice the multiple calls to
geom_point
. The first will plot all of the points. The second will blot just thesubset
of data wheredf1$FailRate_M1 >= 10
with ared
color. What may not be obvious is that there is alightgreen
point underneath thisred
point. - 注意到对地点的多次调用。第一个将绘制所有的点。第二种方法只会在df1$FailRate_M1 >= 10的数据子集上涂上红色。可能不明显的是在这个红点下面有一个浅绿色的点。
- On the call to
geom_hline
I am plotting multipleyintercepts
with thec()
function. Alternatively, you could callgeom_hline
twice. - 在调用geom_hline时,我使用c()函数绘制多个yintercepts。或者,您可以两次调用geom_hline。
#2
2
Building on Jason's answer with your p1 dataframe.
以Jason的回答为基础,使用p1 dataframe。
You can access the values returned by the qic function and use print.out =TRUE in the function call to see them in the console.
您可以访问qic函数返回的值并使用print。out =TRUE在函数调用中,在控制台中查看它们。
Updated answer using dplyr:
更新使用dplyr回答:
library(dplyr)
library(ggplot2)
library(ggExtra)# optional for plot tidying
df2 <- data.frame(p1$labels,p1$y,p1$cl,p1$ucl) %>%
dplyr::rename(y = p1.y,
Datetime = p1.labels,
cl = p1.cl,
ucl= p1.ucl)
p <- ggplot(df2, aes(x = Datetime, y = y, group = 1)) +
theme_minimal() +
geom_line(color = "steelblue", size = 1) +
geom_point(color = "steelblue", size = 3) +
geom_point(data = subset(df2, FailRate_M1 >= 10), color = "red", size = 4) +
geom_hline(aes(yintercept = cl)) +
geom_hline(aes(yintercept = ucl)) +
labs(title = "Measurement Fail Rate (M1)",
y = "MFR (%)")
p <- p + removeGrid() + rotateTextX() #from ggExtra,personal preference
p
最后的情节
The intercept lines are no longer hard coded. I remove extraneous horizontal lines from all run/control charts, ggExtra's removeGrid and rotateTextX() are much easier (for me at least) to remember than equivalent ggplot2 syntax
拦截线不再是硬编码。我从所有运行/控制图表中删除了无关的横线,与等效的ggplot2语法相比,ggExtra的removeGrid和rotateTextX()更容易记住(至少对我来说)
#1
1
I am not familiar with what what qicharts::qic
is doing, but the following mimics the core elements of the graphic with ggplot2
:
我不太了解qicharts::qic在做什么,但是下面的例子模仿了图形的核心元素ggplot2:
library(ggplot2)
my_value <- min(df1$FailRate_M1) + 6
ggplot(df1, aes(x = Datetime, y = FailRate_M1, group = 1)) +
geom_line(color = "steelblue", size = 1) +
geom_point(color = "lightgreen", size = 3) +
geom_point(data = subset(df1, FailRate_M1 >= 10), color = "red", size = 4) +
geom_hline(aes(yintercept = c(1.3, 4.8))) +
geom_hline(aes(yintercept = my_value), linetype = 2) +
labs(title = "Measurement Fail Rate (M1)",
y = "MFR (%)")
A couple notes to aid your understanding:
以下是一些帮助你理解的笔记:
- When
x
is a factor, you need to useaes(group = 1)
so thatggplot()
knows the data "belong together" and should be "connected". In this case, with a line. - 当x是一个因子时,您需要使用aes(group = 1),以便ggplot()知道数据“属于一起”,并且应该“连接”。在这种情况下,用一条线。
- Notice the multiple calls to
geom_point
. The first will plot all of the points. The second will blot just thesubset
of data wheredf1$FailRate_M1 >= 10
with ared
color. What may not be obvious is that there is alightgreen
point underneath thisred
point. - 注意到对地点的多次调用。第一个将绘制所有的点。第二种方法只会在df1$FailRate_M1 >= 10的数据子集上涂上红色。可能不明显的是在这个红点下面有一个浅绿色的点。
- On the call to
geom_hline
I am plotting multipleyintercepts
with thec()
function. Alternatively, you could callgeom_hline
twice. - 在调用geom_hline时,我使用c()函数绘制多个yintercepts。或者,您可以两次调用geom_hline。
#2
2
Building on Jason's answer with your p1 dataframe.
以Jason的回答为基础,使用p1 dataframe。
You can access the values returned by the qic function and use print.out =TRUE in the function call to see them in the console.
您可以访问qic函数返回的值并使用print。out =TRUE在函数调用中,在控制台中查看它们。
Updated answer using dplyr:
更新使用dplyr回答:
library(dplyr)
library(ggplot2)
library(ggExtra)# optional for plot tidying
df2 <- data.frame(p1$labels,p1$y,p1$cl,p1$ucl) %>%
dplyr::rename(y = p1.y,
Datetime = p1.labels,
cl = p1.cl,
ucl= p1.ucl)
p <- ggplot(df2, aes(x = Datetime, y = y, group = 1)) +
theme_minimal() +
geom_line(color = "steelblue", size = 1) +
geom_point(color = "steelblue", size = 3) +
geom_point(data = subset(df2, FailRate_M1 >= 10), color = "red", size = 4) +
geom_hline(aes(yintercept = cl)) +
geom_hline(aes(yintercept = ucl)) +
labs(title = "Measurement Fail Rate (M1)",
y = "MFR (%)")
p <- p + removeGrid() + rotateTextX() #from ggExtra,personal preference
p
最后的情节
The intercept lines are no longer hard coded. I remove extraneous horizontal lines from all run/control charts, ggExtra's removeGrid and rotateTextX() are much easier (for me at least) to remember than equivalent ggplot2 syntax
拦截线不再是硬编码。我从所有运行/控制图表中删除了无关的横线,与等效的ggplot2语法相比,ggExtra的removeGrid和rotateTextX()更容易记住(至少对我来说)