有了二叉查找树、平衡树(AVL)为啥还需要红黑树?

时间:2021-02-22 20:12:30

序言

有了二叉查找树、平衡树(AVL)为啥还需要红黑树?

二叉查找树的缺点

平衡二叉树

虽然平衡树解决了二叉查找树退化为近似链表的缺点,能够把查找时间控制在 O(logn),不过却不是最佳的,因为平衡树要求每个节点的左子树和右子树的高度差至多等于1,这个要求实在是太严了,导致每次进行插入/删除节点的时候,几乎都会破坏平衡树的第二个规则,进而我们都需要通过左旋和右旋来进行调整,使之再次成为一颗符合要求的平衡树。

显然,如果在那种插入、删除很频繁的场景中,平衡树需要频繁着进行调整,这会使平衡树的性能大打折扣,为了解决这个问题,于是有了红黑树。

红黑树

红黑树具有如下特点:

1、具有二叉查找树的特点。

2、根节点是黑色的;

3、每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存数据。

4、任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的。

5、每个节点,从该节点到达其可达的叶子节点是所有路径,都包含相同数目的黑色节点。

正是由于红黑树的这种特点,使得它能够在最坏情况下,也能在 O(logn) 的时间复杂度查找到某个节点。

不过,与平衡树不同的是,红黑树在插入、删除等操作,不会像平衡树那样,频繁着破坏红黑树的规则,所以不需要频繁着调整,这也是我们为什么大多数情况下使用红黑树的原因。

不过,如果你要说,单单在查找方面的效率的话,平衡树比红黑树快。

所以,我们也可以说,红黑树是一种不大严格的平衡树。也可以说是一个折中发方案。

而关于红黑树的应用,一个非常经典的就是JDK1.8的HashMap中,当链表长度超过8时,就会由链表变成红黑树

小结:

平衡树是为了解决二叉查找树退化为链表的情况,而红黑树是为了解决平衡树在插入、删除等操作需要频繁调整的情况。

资料

二叉查找树、平衡树(AVL)为啥还需要红黑树?

红黑树这个数据结构,让你又爱又恨?看了这篇,妥妥的征服它

腾讯面试题:有了二叉查找树、平衡树为啥还需要红黑树?