P1217 [USACO1.5]回文质数 Prime Palindromes(技巧+暴力枚举+线性筛)

时间:2022-05-14 20:11:12

技巧:就是偶数位的回文数字一定不是质数---------证明:奇数位之和sum1==偶数位之和sum2的数字可以被11整除。(11除外,这是一个坑点)

   最高位,最低位必须是 1, 3, 7, 9

暴力枚举:也就是说,直接枚举奇数位(1,3,5,7)就可以了。至于回文嘛,除去最高位和最低位,也最多是枚举3位数字,时间复杂度在10^3.不管怎么说还是暴力的起的。

线性筛:就是用于判断最后枚举的数字是不是质数的,注意,还是要把质数的范围取大一点。根据质数在后面越来越少的概率图,大家,可以随便定个范围。

    最开始,是筛的1000以内的质数,但是,错了很多,所以筛了10000以内的就过了。

ac代码:

#include<iostream>
using namespace std;
const int N = 1e4;
int prime[N], sum, r, l;
bool vis[N];
bool is_prime[N];
int a[] = { , , , };
int kk[] = { , ,};
int Prime(int n = N){
int cnt = ;
for (int i = ; i <= n; ++i)
{
if (!vis[i]){
prime[cnt++] = i;
is_prime[i] = ;
}
for (int j = ; j < cnt&&i*prime[j] <= n; ++j)
{
vis[i*prime[j]] = ;
if (i%prime[j] == )break;
}
}
return cnt;
} bool f(int x){
if (x < N)return is_prime[x];
else{
for (int i = ; i < sum; ++i){
if (x%prime[i] == )return ;
}
}
return ;
} void DFS(){
int num;
for (int i = ; i <= ;++i)
if (kk[i] >= l&&kk[i] <= r)cout << kk[i] << endl;
if (r / ){
for (int i = ; i <= ; ++i){
for (int j = ; j <= ; ++j){
num = a[i] * + j * + a[i];
if (num>=l&&num<=r&&f(num))cout << num << endl;
}
}
}
if (r / ){
for (int i = ; i <= ; ++i){
for (int a1 = ; a1 <= ;++a1)
for (int a2 = ; a2 <= ; ++a2){
num = a[i] * + a1 * + a2 * + a1 * + a[i];
if (num >= l&&num <= r&&f(num))cout << num << endl;
}
}
}
if (r / ){
for (int i = ; i <= ; ++i){
for (int a1 = ; a1 <= ; ++a1)
for (int a2 = ; a2 <= ; ++a2)
for (int a3 = ; a3 <= ;++a3){
num = a[i] * + a1 * + a2 * +a3*+a2* + a1 * + a[i];
if (num >= l&&num <= r&&f(num))cout << num << endl;
}
}
}
} int main(){
sum = Prime();
cin >> l >> r;
DFS();
}