题目背景
二分图
题目描述
给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数
输入输出格式
输入格式:
第一行,n,m,e
第二至e+1行,每行两个正整数u,v,表示u,v有一条连边
输出格式:
共一行,二分图最大匹配
输入输出样例
输入样例#1:
1 1 1
1 1
输出样例#1:
1
说明
n,m<=1000,1<=u<=n,1<=v<=m
因为数据有坑,可能会遇到v>m的情况。请把v>m的数据自觉过滤掉。
算法:二分图匹配
++++++++++++++++++++++++++++++++++++++++++++++++++++
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<vector>
#include<list>
#include<map>
#define maxn 1000001
#define F(i,j,k) for(int i=j;i<=k;i++)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define inf 0x7fffffff
#define maxm 2016
#define mod 1000000007
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n1,n2,m;
int mp[maxm][maxm];
int vis[maxn],link[maxn];
inline bool find(int u)
{
F(i,,n2){
if(mp[u][i]&&!vis[i]){
vis[i]=;
if(link[i]==||find(link[i])){
link[i]=u;
return true;
}
}
}
return false;
}
int ans=;
int main()
{
std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
#ifdef LOCAL
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
cin>>n1>>n2>>m;
F(i,,m-){
int x,y;cin>>x>>y;
mp[x][y]=;
}
F(i,,n1){
M(vis,false);
if(find(i)) ans++;
}
cout<<ans<<endl;
return ;
}