使用python3 学习了决策树分类器的api
涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型
需要网上下载数据集,我把他们下载到了本地,
可以到我的git下载代码和数据集: https://github.com/linyi0604/MachineLearning
1 import pandas as pd 2 from sklearn.cross_validation import train_test_split 3 from sklearn.feature_extraction import DictVectorizer 4 from sklearn.tree import DecisionTreeClassifier 5 from sklearn.metrics import classification_report 6 7 ''' 8 决策树 9 涉及多个特征,没有明显的线性关系 10 推断逻辑非常直观 11 不需要对数据进行标准化 12 ''' 13 14 ''' 15 1 准备数据 16 ''' 17 # 读取泰坦尼克乘客数据,已经从互联网下载到本地 18 titanic = pd.read_csv("./data/titanic/titanic.txt") 19 # 观察数据发现有缺失现象 20 # print(titanic.head()) 21 22 # 提取关键特征,sex, age, pclass都很有可能影响是否幸免 23 x = titanic[['pclass', 'age', 'sex']] 24 y = titanic['survived'] 25 # 查看当前选择的特征 26 # print(x.info()) 27 ''' 28 <class 'pandas.core.frame.DataFrame'> 29 RangeIndex: 1313 entries, 0 to 1312 30 Data columns (total 3 columns): 31 pclass 1313 non-null object 32 age 633 non-null float64 33 sex 1313 non-null object 34 dtypes: float64(1), object(2) 35 memory usage: 30.9+ KB 36 None 37 ''' 38 # age数据列 只有633个,对于空缺的 采用平均数或者中位数进行补充 希望对模型影响小 39 x['age'].fillna(x['age'].mean(), inplace=True) 40 41 ''' 42 2 数据分割 43 ''' 44 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33) 45 # 使用特征转换器进行特征抽取 46 vec = DictVectorizer() 47 # 类别型的数据会抽离出来 数据型的会保持不变 48 x_train = vec.fit_transform(x_train.to_dict(orient="record")) 49 # print(vec.feature_names_) # ['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male'] 50 x_test = vec.transform(x_test.to_dict(orient="record")) 51 52 ''' 53 3 训练模型 进行预测 54 ''' 55 # 初始化决策树分类器 56 dtc = DecisionTreeClassifier() 57 # 训练 58 dtc.fit(x_train, y_train) 59 # 预测 保存结果 60 y_predict = dtc.predict(x_test) 61 62 ''' 63 4 模型评估 64 ''' 65 print("准确度:", dtc.score(x_test, y_test)) 66 print("其他指标:\n", classification_report(y_predict, y_test, target_names=['died', 'survived'])) 67 ''' 68 准确度: 0.7811550151975684 69 其他指标: 70 precision recall f1-score support 71 72 died 0.91 0.78 0.84 236 73 survived 0.58 0.80 0.67 93 74 75 avg / total 0.81 0.78 0.79 329 76 '''