A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
Author: CHEN, Shunbao
Source: Zhejiang Provincial Programming Contest 2004
由表达式可以联想到此题可以用快速幂矩阵来做,下面就easy了
#include<iostream> #include<cstdio> #include<cstring> using namespace std; struct node{ int m[2][2]; }A,per; int a,b,p=7; void init(){ A.m[0][0] = A.m[1][1] = 1; A.m[0][1] = A.m[1][0] = 0; per.m[0][0] = a; per.m[0][1] = b; per.m[1][0] = 1; per.m[1][1] = 0; } node multi(node a,node b){ node c; for( int i = 0 ; i < 2 ; ++i ){ for( int j = 0 ; j < 2 ; ++j ){ c.m[i][j] = 0; for( int k = 0 ; k < 2 ; ++k ) c.m[i][j] += a.m[i][k]*b.m[k][j]; c.m[i][j] %= p; } } return c; } void power(int k){ node ans = A; while( k ){ if( k&1 ) ans = multi(ans,per); per = multi(per,per); k/=2; } printf("%d\n",(ans.m[0][0]+ans.m[0][1])%p); } int main(){ int k; while( ~scanf("%d%d%d",&a,&b,&k) ){ if( !a&&!b&&!k ) break; a%=p,b%=p; if( k < 3 ){ printf("1\n"); continue; } init(); power(k-2); } return 0; }