1背景介绍
现今分布式计算框架像MapReduce和Dryad都提供了高层次的原语,使用户不用操心任务分发和错误容忍,非常容易地编写出并行计算程序。然而这些框架都缺乏对分布式内存的抽象和支持,使其在某些应用场景下不够高效和强大。RDD(Resilient Distributed Datasets弹性分布式数据集)模型的产生动机主要来源于两种主流的应用场景:
Ø 迭代式算法:迭代式机器学习、图算法,包括PageRank、K-means聚类和逻辑回归(logistic regression)
Ø 交互式数据挖掘工具:用户在同一数据子集上运行多个Adhoc查询。
不难看出,这两种场景的共同之处是:)稳定存储中的数据;2)其他RDD。
Ø 只读:状态不可变,不能修改
Ø 分区:支持使RDD中的元素根据那个key来分区(从HDFS文件中创建出一个RDD,而行2则衍生出一个经过某些条件过滤后的RDD。行3将这个RDD errors缓存到内存中,然而第一个RDD lines不会驻留在内存中。这样做很有必要,因为errors可能非常小,足以全部装进内存,而原始数据则会非常庞大。经过缓存后,现在就可以反复重用errors数据了。我们这里做了两个操作,第一个是统计errors中包含MySQL字样的总行数,第二个则是取出包含HDFS字样的行的第三列时间,并保存成一个集合。
这里要注意的是前面曾经提到过的Spark的延迟处理。Spark调度器会将filter和map这两个转换保存到管道,然后一起发送给结点去计算。
2.3优势
RDD与DSM(distributed shared memory)的最大不同是:RDD只能通过粗粒度转换来创建,而DSM则允许对每个内存位置上数据的读和写。在这种定义下,DSM不仅包括了传统的共享内存系统,也包括了像提供了共享DHT(distributed hash table)的Piccolo以及分布式数据库等。所以RDD相比DSM有着下面这些优势:
Ø 高效的容错机制:没有检查点(checkpoint)开销,能够通过世族关系还原。而且还原只涉及了丢失数据分区的重计算,并且重算过程可以在不同结点并行进行,而无需回滚整个系统。
Ø 结点落后问题的缓和(mitigate straggler):RDD的不可变性使得系统能够运行类似MapReduce备份任务,来缓和慢结点。这在DSM系统中却难以实现,因为多个相同任务一起运行会访问同样的内存数据而相互干扰。
Ø 批量操作:任务能够根据数据本地性(data locality)被分配,从而提高性能。
Ø 优雅降级(degrade gracefully):当内存不足时,大分区会被溢出到磁盘,提供与其他现今的数据并行计算系统类似的性能。
2.4应用场景
RDD最适合那种在数据集上的所有元素都执行相同操作的批处理式应用。在这种情况下,RDD只需记录世族图谱中的每个转换就能还原丢失的数据分区,而无需记录大量的数据操作日志。所以RDD:创建RDD。上面的例子除去最后一个collect是个动作,不会创建RDD之外,前面四个转换都会创建出新的RDD。因此第一步就是创建好所有RDD(内部的五项信息)。
步骤2:创建执行计划。Spark会尽可能地管道化,并基于是否要重新组织数据来划分阶段(stage),例如本例中的groupBy()转换就会将整个执行计划划分成两阶段执行。最终会产生一个DAG(directed acyclic graph,有向无环图)作为逻辑执行计划。
步骤3:调度任务。将各阶段划分成不同的任务(task),每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续。
假设本例中的hdfs://names下有四个文件块,那么HadoopRDD中partitions就会有四个分区对应这四个块数据,同时preferedLocations会指明这四个块的最佳位置。现在,就可以创建出四个任务,并调度到合适的集群结点上。
3.3混排
(待补充:关于混排(Shuffle)是如何执行的)
3.4宽窄依赖
在设计RDD的接口时,一个有意思的问题是如何表现RDD之间的依赖。在RDD中将依赖划分成了两种类型:窄依赖(narrow dependencies)和宽依赖(wide dependencies)。窄依赖是指内部实现
Spark的调度器类似于Dryad的,但是增加了对持久化RDD分区是否在内存里的考虑。重温一下前面例子里介绍过的:调度器会根据RDD的族谱创建出分阶段的DAG;每个阶段都包含尽可能多的具有窄依赖的变换;具有宽依赖的混排操作是阶段的边界;调度器根据数据本地性分派任务到集群结点上。 (待补充) Spark支持三种内存管理方式:Java对象的内存存储,序列化数据的内存存储,磁盘存储。第一种能提供最快的性能,因为JVM能够直接访问每个RDD对象。第二种使用户在内存空间有限时,能选择一种比Java对象图更加高效的存储方式。第三种则对大到无法放进内存,但每次重新计算又很耗时的RDD非常有用。 同时,当有新的RDD分区被计算出来而内存空间又不足时,Spark使用LRU策略将老分区移除到磁盘上。 尽管RDD的Lineage可以用来还原数据,但这通常会非常耗时。所以将某些RDD持久化到磁盘上会非常有用,例如前面提到过的,宽依赖的中间数据。对于Spark来说,对检查点的支持非常简单,因为RDD都是不可变的。所以完全可以在后台持久化RDD,而无需暂停整个系统。 (待补充:Broadcast…) 本文内容主要来源于:1)RDD论文《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》;2)Spark峰会ppt资料:《A-Deeper-Understanding-of-Spark-Internals》和《Introduction to Spark Internals》。感兴趣的可以自行查找。4.1调度器
4.2解释器集成
4.3内存管理
4.4检查点支持
5高级特性
6参考资料