The following is from Max Howell @twitter:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can't invert a binary tree on a whiteboard so fuck off.
Now it's your turn to prove that YOU CAN invert a binary tree!
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=10) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N-1. Then N lines follow, each corresponds to a node from 0 to N-1, and gives the indices of the left and right children of the node. If the child does not exist, a "-" will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each test case, print in the first line the level-order, and then in the second line the in-order traversal sequences of the inverted tree. There must be exactly one space between any adjacent numbers, and no extra space at the end of the line.
Sample Input:
8
1 -
- -
0 -
2 7
- -
- -
5 -
4 6
Sample Output:
3 7 2 6 4 0 5 1
6 5 7 4 3 2 0 1
#include<stdio.h>
#include<string>
#include<iostream>
#include<string.h>
#include<sstream>
#include<vector>
#include<map>
#include<stdlib.h>
#include<queue>
using namespace std; struct node
{
node():l(-),r(-){}
int l,r,id;
}; node Tree[];
bool notroot[];
bool fir = ;
void inoder(int root)
{
if(Tree[root].l != -)
{
inoder(Tree[root].l);
}
if(fir)
{
fir = ;
printf("%d",root);
}
else printf(" %d",root);
if(Tree[root].r != -)
{
inoder(Tree[root].r);
}
}
int main()
{
int n,tem;
char l[],r[];
scanf("%d",&n);
for(int i = ;i <n;++i)
{
Tree[i].id = i;
}
for(int i = ;i <n;++i)
{
scanf("%s%s",r,l);
if(l[] != '-')
{
tem = atoi(l);
Tree[i].l = tem;
notroot[tem] = ;
}
if(r[] != '-')
{
tem = atoi(r);
Tree[i].r = atoi(r);
notroot[tem] = ;
}
}
int root;
for(int i = ;i <n;++i)
{
if(!notroot[i])
{
root = i;
break;
}
}
queue<node> qq;
qq.push(Tree[root]);
bool fir2 = ;
while(!qq.empty())
{
node ntem = qq.front();
qq.pop();
if(fir2)
{
fir2 = ;
printf("%d",ntem.id);
}
else printf(" %d",ntem.id);
if(ntem.l != -)
{
qq.push(Tree[ntem.l]);
}
if(ntem.r != -)
{
qq.push(Tree[ntem.r]);
}
}
printf("\n");
inoder(root);
printf("\n");
return ;
}