Considering a endpoint on my backend, that returns the following response:
考虑到我后端的端点,它返回以下响应:
class Arc_Edges_Data(Resource):
def get(self):
#Connect to databse
conn = connectDB()
cur = conn.cursor()
#Perform query and return JSON data
try:
cur.execute("select json_build_object('source', start_location, 'target', end_location, 'frequency', 1) from trips")
except:
print("Error executing select")
ArcList = list (i[0] for i in cur.fetchall())
return ArcList
The frequency here is supposed to be always of 1 for each trip. So this ArcList
originates a response like this:
每次旅行的频率应始终为1。所以这个ArcList发起了这样的响应:
[
{
"frequency": 1,
"source": "c",
"target": "c"
},
{
"frequency": 1,
"source": "a",
"target": "b"
}, {
"frequency": 1,
"source": "a",
"target": "b"
}, ...
]
How can I iterate this response and sum the items that have the same source
and target
? In this case, the resulting list would have only one pair source/target with "a" and "b", but the frequency would be 2, because of the sum.
如何迭代此响应并对具有相同源和目标的项进行求和?在这种情况下,结果列表将只有一对源/目标具有“a”和“b”,但由于总和,频率将为2。
I know that for Javascript I could use something like Array.reduce
, but I don't think it exists for Python.
我知道对于Javascript我可以使用像Array.reduce这样的东西,但我不认为它存在于Python中。
2 个解决方案
#1
2
How about this?
这个怎么样?
import collections
data = [
{
"frequency": 1,
"source": "c",
"target": "c",
},
{
"frequency": 1,
"source": "a",
"target": "b",
},
{
"frequency": 1,
"source": "a",
"target": "b",
},
]
counter = collections.Counter()
for datum in data:
counter[(datum['source'], datum['target'])] += datum['frequency']
print(counter)
# Output:
# Counter({('a', 'b'): 2, ('c', 'c'): 1})
Oh, if you want to put the data back into the same format again, add this code:
哦,如果你想再次将数据恢复为相同的格式,请添加以下代码:
newdata = [{
'source': k[0],
'target': k[1],
'frequency': v,
} for k, v in counter.items()]
print(newdata)
# Output:
# [{'frequency': 1, 'target': 'c', 'source': 'c'}, {'frequency': 2, 'target': 'b', 'source': 'a'}]
#2
0
You could do this:
你可以这样做:
r = {}
for d in ArcList:
key = (d['source'], d['target'])
r[key] = r.setdefault(key, 0) + d['frequency']
return [{'source': k[0], 'target': k[1], 'frequency': v} for k, v in r.items()]
If you want to preserve the original ordering of the items:
如果要保留项目的原始顺序:
from collections import OrderedDict
r = OrderedDict()
# The rest of the solution is the same
...
#1
2
How about this?
这个怎么样?
import collections
data = [
{
"frequency": 1,
"source": "c",
"target": "c",
},
{
"frequency": 1,
"source": "a",
"target": "b",
},
{
"frequency": 1,
"source": "a",
"target": "b",
},
]
counter = collections.Counter()
for datum in data:
counter[(datum['source'], datum['target'])] += datum['frequency']
print(counter)
# Output:
# Counter({('a', 'b'): 2, ('c', 'c'): 1})
Oh, if you want to put the data back into the same format again, add this code:
哦,如果你想再次将数据恢复为相同的格式,请添加以下代码:
newdata = [{
'source': k[0],
'target': k[1],
'frequency': v,
} for k, v in counter.items()]
print(newdata)
# Output:
# [{'frequency': 1, 'target': 'c', 'source': 'c'}, {'frequency': 2, 'target': 'b', 'source': 'a'}]
#2
0
You could do this:
你可以这样做:
r = {}
for d in ArcList:
key = (d['source'], d['target'])
r[key] = r.setdefault(key, 0) + d['frequency']
return [{'source': k[0], 'target': k[1], 'frequency': v} for k, v in r.items()]
If you want to preserve the original ordering of the items:
如果要保留项目的原始顺序:
from collections import OrderedDict
r = OrderedDict()
# The rest of the solution is the same
...