在虚拟机上配置安装hadoop集群

时间:2023-02-13 19:24:20

原本以为有大神已经总结的很清楚了,就不自己在写了, 但是在自己安装的过程中还是出现了一些问题, 所以打算以自己的方式重新总结一下。    参考https://blog.csdn.net/hliq5399/article/details/78193113

完全分布式安装

对于hadoop的本地模式,伪分布式的安装,由于在实际工作中用处不大, 这里就省略不写了。

下载最新版本hadoop

https://hadoop.apache.org/releases.html

服务器功能规划

之前在VirtualBox网络的Host-Only配置 中我已经配置了三台虚拟机, 具体的功能划分如下

master slave1 slave2
NameNode ResourceManage  
DataNode DataNode DataNode
NodeManager NodeManager NodeManager
HistoryServer   SecondaryNameNode

配置Hostname

这部分由于我在安装虚拟机的时候就输入了主机名,所以并不需要额外配置。

具体的修改方法(以master机器为例, 其他机器修改为对应的主机名slave1,slave2)

[root@master hadoop]# vi /etc/sysconfig/network

NETWORKING=yes
HOSTNAME=master

[root@master hadoop]# service network restart

配置hosts

[root@master hadoop]# vi /etc/hosts

192.168.102.3 master
192.168.102.4 slave1
192.168.102.5 slave2

此处还是以master为例, 另外两台slave机器也同样配置。

设置SSH无密码登录

Hadoop集群中的各个机器间会相互地通过SSH访问,每次访问都输入密码是不现实的,所以要配置各个机器间的SSH是无密码登录的。

1、 在master上生成公钥

[root@master hadoop]# ssh-keygen -t rsa

一路回车,都设置为默认值,然后再当前用户(我直接用了root用户,所以没有配置hadoop用户和用户组的过程)的Home目录下的.ssh目录中会生成公钥文件(id_rsa.pub)和私钥文件(id_rsa)

[root@master hadoop]# cd /root/.ssh/
authorized_keys id_rsa id_rsa.pub known_hosts

2、 分发公钥(本机也要分发)

[root@master hadoop]# ssh-copy-id master

[root@master hadoop]# ssh-copy-id slave1

[root@master hadoop]# ssh-copy-id slave2

3、以同样方式设置slave1、slave2到其他机器的无密钥登录。

在master机器上安装Hadoop

我们采用先在master机器上解压、配置Hadoop,然后再分发到其他两台机器上的方式来安装集群。

解压Hadoop目录:

[root@master hadoop]# tar xzvf hadoop-2.9..tar.gz

修改目录的用户名:

[root@master hadoop]# chown -R root:root hadoop-2.9.

配置Hadoop JDK路径修改hadoop-env.sh、mapred-env.sh、yarn-env.sh文件中的JDK路径:

[root@master hadoop]#cd /opt/hadoop/hadoop-2.9./etc/hadoop
[root@master hadoop]# vi hadoop-env.sh
[root@master hadoop]# vi mapred-env.sh
[root@master hadoop]# vi yarn-env.sh
export JAVA_HOME="/opt/java/jdk1.8.0_191"

配置core-site.xml:

[root@master hadoop]# vi /opt/hadoop/hadoop-2.9./etc/hadoop/core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master:8020</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/tmp</value>
</property>
</configuration>

fs.defaultFS为NameNode的地址。

hadoop.tmp.dir为hadoop临时目录的地址,默认情况下,NameNode和DataNode的数据文件都会存在这个目录下的对应子目录下。应该保证此目录是存在的,如果不存在,先创建。

配置hdfs-site.xml:

[root@master hadoop]# vi /opt/hadoop/hadoop-2.9./etc/hadoop/hdfs-site.xml
<configuration>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>slave2:</value>
</property>
</configuration>

dfs.namenode.secondary.http-address是指定secondaryNameNode的http访问地址和端口号,因为在规划中,我们将slave2规划为SecondaryNameNode服务器。

所以这里设置为:slave2:50090

配置slaves:

[root@master hadoop]# vi /opt/hadoop/hadoop-2.9./etc/hadoop/slaves
master
slave1
slave2

slaves文件是指定HDFS上有哪些DataNode节点。

配置yarn-site.xml:

[root@master hadoop]# vi /opt/hadoop/hadoop-2.9./etc/hadoop/yarn-site.xml
<configuration>

<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>slave1</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value></value>
</property>
</configuration>

根据规划yarn.resourcemanager.hostname这个指定resourcemanager服务器指向slave1

yarn.log-aggregation-enable是配置是否启用日志聚集功能。

yarn.log-aggregation.retain-seconds是配置聚集的日志在HDFS上最多保存多长时间。

配置mapred-site.xml:

从mapred-site.xml.template复制一个mapred-site.xml文件。

[root@master hadoop]# cp /opt/hadoop/hadoop-2.9./etc/hadoop/mapred-site.xml.template /opt/hadoop/hadoop-2.9./etc/hadoop/mapred-site.xml
[root@master hadoop]# vi /opt/hadoop/hadoop-2.9./etc/hadoop/mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
</property>
</configuration>

mapreduce.framework.name设置mapreduce任务运行在yarn上。

mapreduce.jobhistory.address是设置mapreduce的历史服务器安装在master机器上。

mapreduce.jobhistory.webapp.address是设置历史服务器的web页面地址和端口号。

分发Hadoop文件

1、 首先在其他两台机器上创建存放Hadoop的目录

[root@slave1 opt]# mkdir /opt/hadoop/
[root@slave2 opt]# mkdir /opt/hadoop/

2、 通过Scp分发

Hadoop根目录下的share/doc目录是存放的hadoop的文档,文件相当大,建议在分发之前将这个目录删除掉,可以节省硬盘空间并能提高分发的速度。

doc目录大小有1.6G。

[root@master hadoop]# scp -r /opt/hadoop/hadoop-2.9./ slave1:/opt/hadoop/
[root@master hadoop]# scp -r /opt/hadoop/hadoop-2.9./ slave2:/opt/hadoop/

配置Hadoop环境变量:

在所有机器上执行下面命令。

千万注意:

1、如果你使用root用户进行安装。 vi /etc/profile 即可 系统变量

2、如果你使用普通用户进行安装。 vi ~/.bashrc 用户变量

[root@master hadoop]#vi /etc/profile

在文件最后加上

export HADOOP_HOME=/opt/hadoop/hadoop-2.9.2
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:

修改后重新加载一下环境变量 source /etc/profile 或 source ~/.bashrc

格式化NameNode

在master(NameNode)机器上执行格式化:

[root@master bin]# hdfs namenode -format

启动集群

1、 启动HDFS

[root@master current]# start-dfs.sh
18/12/20 14:13:31 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [master]
master: starting namenode, logging to /opt/hadoop/hadoop-2.9.2/logs/hadoop-root-namenode-master.out
slave1: starting datanode, logging to /opt/hadoop/hadoop-2.9.2/logs/hadoop-root-datanode-slave1.out
slave2: starting datanode, logging to /opt/hadoop/hadoop-2.9.2/logs/hadoop-root-datanode-slave2.out
master: starting datanode, logging to /opt/hadoop/hadoop-2.9.2/logs/hadoop-root-datanode-master.out
Starting secondary namenodes [slave2]
slave2: starting secondarynamenode, logging to /opt/hadoop/hadoop-2.9.2/logs/hadoop-root-secondarynamenode-slave2.out
18/12/20 14:13:47 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

2、 启动YARN

在slave1(ResourceManager)机器上启动YARN服务

[root@slave1 opt]# start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /opt/hadoop/hadoop-2.9./logs/yarn-root-resourcemanager-slave1.out
slave2: starting nodemanager, logging to /opt/hadoop/hadoop-2.9./logs/yarn-root-nodemanager-slave2.out
master: starting nodemanager, logging to /opt/hadoop/hadoop-2.9./logs/yarn-root-nodemanager-master.out
slave1: starting nodemanager, logging to /opt/hadoop/hadoop-2.9./logs/yarn-root-nodemanager-slave1.out

3、 启动日志服务器

因为我们规划的是在master服务器上运行MapReduce日志服务,所以要在master上启动。

[root@master sbin]# mr-jobhistory-daemon.sh start historyserver
starting historyserver, logging to /opt/hadoop/hadoop-2.9./logs/mapred-root-historyserver-master.out

4、查看3台服务器的进程启动状态

[root@master logs]# jps
Jps
NodeManager
NameNode
JobHistoryServer
[root@slave1 opt]# jps
DataNode
ResourceManager
NodeManager
Jps
[root@slave2 hadoop]# jps
SecondaryNameNode
DataNode
Jps
NodeManager

5、 查看HDFS Web页面

http://192.168.102.3:50070/

6、 查看YARN Web 页面

http://192.168.102.4:8088/cluster

测试Job

我们这里用hadoop自带的wordcount例子来在本地模式下测试跑mapreduce。

1、 准备mapreduce输入文件wc.input

[root@master logs]# cat /opt/data/wc.input
hadoop mapreduce hive
hbase spark storm
sqoop hadoop hive
spark hadoop

2、 在HDFS创建输入目录input

[root@master logs]# hdfs dfs -mkdir /input

3、 将wc.input上传到HDFS

[root@master logs]# hdfs dfs -put /opt/data/wc.input /input/wc.input

4、 运行hadoop自带的mapreduce Demo

[root@master logs]# yarn jar /opt/hadoop/hadoop-2.9./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9..jar wordcount /input/wc.input /output/
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: INFO client.RMProxy: Connecting to ResourceManager at slave1/192.168.102.4:
// :: INFO input.FileInputFormat: Total input files to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1545286577071_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1545286577071_0001
// :: INFO mapreduce.Job: The url to track the job: http://slave1:8088/proxy/application_1545286577071_0001/
// :: INFO mapreduce.Job: Running job: job_1545286577071_0001
// :: INFO mapreduce.Job: Job job_1545286577071_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1545286577071_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=

5、 查看输出文件

[root@master logs]# hdfs dfs -ls /output
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found items
-rw-r--r-- root supergroup -- : /output/_SUCCESS
-rw-r--r-- root supergroup -- : /output/part-r-
[root@master logs]# hdfs dfs -cat /output/part-r-
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
hadoop
hbase
hive
mapreduce
spark
sqoop
storm