python 相似语句匹配(非机器学习)

时间:2021-07-31 19:13:31
#coding=utf-8

import xlrd
import distance
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
import numpy as np
from scipy.linalg import norm workbook = xlrd.open_workbook(u'工程师问答.xls')
sheet_names= workbook.sheet_names() ls = []
for sheet_name in sheet_names: sheet1 = workbook.sheet_by_name(sheet_name)
for i in range(1, 3858):
row = sheet1.row_values(i)
ls.append(row[0]) # print len(ls)
target = u'D90的发动机热效率是多少?'
print u'目标语句:' + target # 编辑距离计算
def edit_distance(s1, s2):
return distance.levenshtein(s1, s2) results = list(filter(lambda x: edit_distance(x, target) <= 5, ls))
print u'1)编辑距离计算,阈值为5'
for i in results:
print i # 杰卡德系数计算
def jaccard_similarity(s1, s2):
def add_space(s):
return ' '.join(list(s)) # 将字中间加入空格
s1, s2 = add_space(s1), add_space(s2)
# 转化为TF矩阵
cv = CountVectorizer(tokenizer=lambda s: s.split())
corpus = [s1, s2]
vectors = cv.fit_transform(corpus).toarray()
# 求交集
numerator = np.sum(np.min(vectors, axis=0))
# 求并集
denominator = np.sum(np.max(vectors, axis=0))
# 计算杰卡德系数
return 1.0 * numerator / denominator results = list(filter(lambda x: jaccard_similarity(x, target) > 0.6, ls))
print u'2)杰卡德系数计算,阈值为0.6'
for i in results:
print i # TF 计算
def tf_similarity(s1, s2):
def add_space(s):
return ' '.join(list(s)) # 将字中间加入空格
s1, s2 = add_space(s1), add_space(s2)
# 转化为TF矩阵
cv = CountVectorizer(tokenizer=lambda s: s.split())
corpus = [s1, s2]
vectors = cv.fit_transform(corpus).toarray()
# 计算TF系数
return np.dot(vectors[0], vectors[1]) / (norm(vectors[0]) * norm(vectors[1])) results = list(filter(lambda x: tf_similarity(x, target) > 0.7, ls))
print u'3)TF 计算,阈值为0.7'
for i in results:
print i # TFIDF 系数
def tfidf_similarity(s1, s2):
def add_space(s):
return ' '.join(list(s)) # 将字中间加入空格
s1, s2 = add_space(s1), add_space(s2)
# 转化为TF矩阵
cv = TfidfVectorizer(tokenizer=lambda s: s.split())
corpus = [s1, s2]
vectors = cv.fit_transform(corpus).toarray()
# 计算TF系数
return np.dot(vectors[0], vectors[1]) / (norm(vectors[0]) * norm(vectors[1])) results = list(filter(lambda x: tfidf_similarity(x, target) > 0.6, ls))
print u'4)TFIDF 系数,阈值为0.6'
for i in results:
print i