对于初学者来说,R语言中的factor有些难以理解。如果直译factor为“因子”,使得其更加难以理解。我倾向于不要翻译,就称其为factor,然后从几个例子中理解:
- <span style="font-size:12px;">data <- c(1,2,2,3,1,2,3,3,1,2,3,3,1)
- data
- </span>
显示结果:
- <span style="font-size:12px;"> [1] 1 2 2 3 1 2 3 3 1 2 3 3 1</span>
然后运行:
- <span style="font-size:12px;">fdata <- factor(data)
- fdata </span>
显示结果:
- <span style="font-size:12px;"> [1] 1 2 2 3 1 2 3 3 1 2 3 3 1
- Levels: 1 2 3</span>
继续查看class
- <span style="font-size:12px;">class(fdata)
- [1] "factor"
- class(data)
- [1] "numeric"</span>
可以看到,factor()函数将原来的数值型的向量转化为了factor类型。factor类型的向量中有Levels的概念。Levels就是factor中的所有元素的集合(没有重复)。我们可以发现Levels就是factor中元素排重后且字符化的结果!因为Levels的元素都是character。
- <span style="font-size:12px;">levels(fdata)
- [1] "1" "2" "3"</span>
我们可以在factor生成时,通过labels向量来指定levels,继续上面的程序:
- <span style="font-size:12px;">rdata <- factor(data,labels=c("I","II","III"))
- rdata
- </span>
显示结果:
- <span style="font-size:12px;">[1] I II II III I II III III I II III III I
- Levels: I II III</span>
也可以在factor生成以后通过levels函数来修改:
- <span style="font-size:12px;">rdata <- factor(data,labels=c("e","ee","eee"))
- rdata
- </span>
显示结果:
- <span style="font-size:12px;"> [1] e ee ee eee e ee eee eee e ee eee eee e
- Levels: e ee eee</span>
看到这里,我们马上就会意识到,为什么factor要有levels?因为factor是一种更高效的数据存储方式。对于不同的变量,只需要存储一次就可以,具体的数据内容只要存储相应的整数内容就可以了。因此,read.table()函数会默认把读取的数据以factor格式存储,除非你指定类型。
并且,factors可以指定数据的顺序:
- <span style="font-size:12px;"> mons <- c("March","April","January","November","January", "September","October","September","November","August", "January","November","November","February","May","August", "July","December","August","August","September","November", "February","April")</span><pre tabindex="0" class="GCWXI2KCJKB" id="rstudio_console_output" style="font-family: 'Lucida Console'; font-size: 10pt !important; outline: none; border: none; word-break: break-all; margin: 0px; -webkit-user-select: text; white-space: pre-wrap !important; line-height: 15px; color: rgb(0, 0, 0); font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255);"><pre name="code" class="html"><span style="font-size:12px;">mons <- factor(mons)
- </span><pre name="code" class="html"><span style="font-size:12px;">table(mons)
- </span>
显示结果:
- <span style="font-size:12px;">mons
- April August December February January July March May November
- 2 4 1 2 3 1 1 1 5
- October September
- 1 3 </span>
显然月份是有顺序的,我们可以为factor指定顺序
- mons = factor(mons,levels=c("January","February","March","April","May","June","July","August","September","October","November","December"),ordered=TRUE)
现在运行:
- table(mons)
- mons
- January February March April May June
- 3 2 1 2 1 0
- July August September October November December
- 1 4 3 1 5 1
需要注意的是数值型变量与factor的互相转化:
- fert = c(10,20,20,50,10,20,10,50,20)
- mean(fert)
- [1] 23.33333
转化后:
- mean(factor(fert))
- Warning message:
- In mean.default(factor(fert)) : 参数不是数值也不是逻辑值:回覆NA
那我们这里,是不是可以直接用as.numeric() 转化呢?
- mean(as.numeric(factor(fert)))
- [1] 1.888889
发现上面是错误的!
这里需要这么转回去:
- ff <- factor(fert)
- mean(as.numeric(levels(ff)[ff]))
- [1] 23.33333