Hash函数--除留余数法--开放定址法--线性探测再散列

时间:2022-08-26 19:10:22

Hash函数计算--常用方法之

--除留余数法:

假设哈希表长为mp为小于等于m的最大素数,则哈希函数为

hk=k  %  p ,其中%为模p取余运算。

例如,已知待散列元素为(18756043549046),表长m=10p=7,则有

    h(18)=18 % 7=4    h(75)=75 % 7=5    h(60)=60 % 7=4   

    h(43)=43 % 7=1    h(54)=54 % 7=5    h(90)=90 % 7=6   

    h(46)=46 % 7=4

此时冲突较多。为减少冲突,可取较大的m值和p值,如m=p=13,结果如下:

    h(18)=18 % 13=5    h(75)=75 % 13=10    h(60)=60 % 13=8    

    h(43)=43 % 13=4    h(54)=54 % 13=2    h(90)=90 % 13=12   

    h(46)=46 % 13=7

此时没有冲突,如图所示。

 

                 0       1      2     3    4     5       6      7       8      9     10    11      12

 

 

 

54

 

43

18

 

46

60

 

75

 

90

               

 理论研究表明,除留余数法的模p取不大于表长且最接近表长m素数时效果最好,且p最好取1.1n~1.7n之间的一个素数(n为存在的数据元素个数)


冲突解决:

       1、开放定址法

这种方法也称再散列法其基本思想是:当关键字key的哈希地址p=Hkey)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,直到找出一个不冲突的哈希地址pi ;

将相应元素存入其中。这种方法有一个通用的再散列函数形式:

          Hi=Hkey+di% m   i=12…,n

    其中Hkey)为哈希函数,为表长,di称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:

 1>   线性探测再散列(常用)

    dii=123m-1

这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。

 2> 二次探测再散列

    di=12-1222-22k2-k2    ( k<=m/2 )

    这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。 

    3>伪随机探测再散列

    di=伪随机数序列。

具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),并给定一个随机数做起点。


2、   再哈希法

    这种方法是同时构造多个不同的哈希函数;


3、链地址法

    这种方法的基本思想是将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。


4、建立公共溢出区

这种方法的基本思想是:将哈希表分为基本表溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表