import numpy as np chushi = 6 a=np.zeros((chushi,chushi,chushi))#建立三维矩阵 b[0] for i in range(0,chushi): b1=np.random.randint(2, size=(chushi, chushi))#二维矩阵的随机数 a[i]=b1 #b3=np.sum(b1,axis=0) #b2=np.sum(b1,axis=1) print(a)
3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3D文字等的绘制。
准备工作:
python中绘制3D图形,依旧使用常用的绘图模块matplotlib,但需要安装mpl_toolkits工具包,安装方法如下:windows命令行进入到python安装目录下的Scripts文件夹下,执行: pip install --upgrade matplotlib即可;linux环境下直接执行该命令。
安装好这个模块后,即可调用mpl_tookits下的mplot3d类进行3D图形的绘制。
下面以实例进行说明。
1、3D表面形状的绘制
- from mpl_toolkits.mplot3d import Axes3D
- import matplotlib.pyplot as plt
- import numpy as np
- fig = plt.figure()
- ax = fig.add_subplot(111, projection='3d')
- # Make data
- u = np.linspace(0, 2 * np.pi, 100)
- v = np.linspace(0, np.pi, 100)
- x = 10 * np.outer(np.cos(u), np.sin(v))
- y = 10 * np.outer(np.sin(u), np.sin(v))
- z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))
- # Plot the surface
- ax.plot_surface(x, y, z, color='b')
- plt.show()
这段代码是绘制一个3D的椭球表面,结果如下:
2、3D直线(曲线)的绘制
- import matplotlib as mpl
- from mpl_toolkits.mplot3d import Axes3D
- import numpy as np
- import matplotlib.pyplot as plt
- mpl.rcParams['legend.fontsize'] = 10
- fig = plt.figure()
- ax = fig.gca(projection='3d')
- theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
- z = np.linspace(-2, 2, 100)
- r = z**2 + 1
- x = r * np.sin(theta)
- y = r * np.cos(theta)
- ax.plot(x, y, z, label='parametric curve')
- ax.legend()
- plt.show()
这段代码用于绘制一个螺旋状3D曲线,结果如下:
3、绘制3D轮廓
- from mpl_toolkits.mplot3d import axes3d
- import matplotlib.pyplot as plt
- from matplotlib import cm
- fig = plt.figure()
- ax = fig.gca(projection='3d')
- X, Y, Z = axes3d.get_test_data(0.05)
- cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
- cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
- cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
- ax.set_xlabel('X')
- ax.set_xlim(-40, 40)
- ax.set_ylabel('Y')
- ax.set_ylim(-40, 40)
- ax.set_zlabel('Z')
- ax.set_zlim(-100, 100)
- plt.show()
绘制结果如下:
4、绘制3D直方图
- from mpl_toolkits.mplot3d import Axes3D
- import matplotlib.pyplot as plt
- import numpy as np
- fig = plt.figure()
- ax = fig.add_subplot(111, projection='3d')
- x, y = np.random.rand(2, 100) * 4
- hist, xedges, yedges = np.histogram2d(x, y, bins=4, range=[[0, 4], [0, 4]])
- # Construct arrays for the anchor positions of the 16 bars.
- # Note: np.meshgrid gives arrays in (ny, nx) so we use 'F' to flatten xpos,
- # ypos in column-major order. For numpy >= 1.7, we could instead call meshgrid
- # with indexing='ij'.
- xpos, ypos = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25)
- xpos = xpos.flatten('F')
- ypos = ypos.flatten('F')
- zpos = np.zeros_like(xpos)
- # Construct arrays with the dimensions for the 16 bars.
- dx = 0.5 * np.ones_like(zpos)
- dy = dx.copy()
- dz = hist.flatten()
- ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', zsort='average')
- plt.show()
绘制结果如下:
5、绘制3D网状线
- from mpl_toolkits.mplot3d import axes3d
- import matplotlib.pyplot as plt
- fig = plt.figure()
- ax = fig.add_subplot(111, projection='3d')
- # Grab some test data.
- X, Y, Z = axes3d.get_test_data(0.05)
- # Plot a basic wireframe.
- ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
- plt.show()
绘制结果如下:
6、绘制3D三角面片图
- from mpl_toolkits.mplot3d import Axes3D
- import matplotlib.pyplot as plt
- import numpy as np
- n_radii = 8
- n_angles = 36
- # Make radii and angles spaces (radius r=0 omitted to eliminate duplication).
- radii = np.linspace(0.125, 1.0, n_radii)
- angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
- # Repeat all angles for each radius.
- angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
- # Convert polar (radii, angles) coords to cartesian (x, y) coords.
- # (0, 0) is manually added at this stage, so there will be no duplicate
- # points in the (x, y) plane.
- x = np.append(0, (radii*np.cos(angles)).flatten())
- y = np.append(0, (radii*np.sin(angles)).flatten())
- # Compute z to make the pringle surface.
- z = np.sin(-x*y)
- fig = plt.figure()
- ax = fig.gca(projection='3d')
- ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)
- plt.show()
绘制结果如下:
7、绘制3D散点图
- from mpl_toolkits.mplot3d import Axes3D
- import matplotlib.pyplot as plt
- import numpy as np
- def randrange(n, vmin, vmax):
- '''''
- Helper function to make an array of random numbers having shape (n, )
- with each number distributed Uniform(vmin, vmax).
- '''
- return (vmax - vmin)*np.random.rand(n) + vmin
- fig = plt.figure()
- ax = fig.add_subplot(111, projection='3d')
- n = 100
- # For each set of style and range settings, plot n random points in the box
- # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
- for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]:
- xs = randrange(n, 23, 32)
- ys = randrange(n, 0, 100)
- zs = randrange(n, zlow, zhigh)
- ax.scatter(xs, ys, zs, c=c, marker=m)
- ax.set_xlabel('X Label')
- ax.set_ylabel('Y Label')
- ax.set_zlabel('Z Label')
- plt.show()
绘制结果如下:
8、绘制3D文字
- from mpl_toolkits.mplot3d import Axes3D
- import matplotlib.pyplot as plt
- fig = plt.figure()
- ax = fig.gca(projection='3d')
- # Demo 1: zdir
- zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
- xs = (1, 4, 4, 9, 4, 1)
- ys = (2, 5, 8, 10, 1, 2)
- zs = (10, 3, 8, 9, 1, 8)
- for zdir, x, y, z in zip(zdirs, xs, ys, zs):
- label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
- ax.text(x, y, z, label, zdir)
- # Demo 2: color
- ax.text(9, 0, 0, "red", color='red')
- # Demo 3: text2D
- # Placement 0, 0 would be the bottom left, 1, 1 would be the top right.
- ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes)
- # Tweaking display region and labels
- ax.set_xlim(0, 10)
- ax.set_ylim(0, 10)
- ax.set_zlim(0, 10)
- ax.set_xlabel('X axis')
- ax.set_ylabel('Y axis')
- ax.set_zlabel('Z axis')
- plt.show()
绘制结果如下:
9、3D条状图
- from mpl_toolkits.mplot3d import Axes3D
- import matplotlib.pyplot as plt
- import numpy as np
- fig = plt.figure()
- ax = fig.add_subplot(111, projection='3d')
- for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
- xs = np.arange(20)
- ys = np.random.rand(20)
- # You can provide either a single color or an array. To demonstrate this,
- # the first bar of each set will be colored cyan.
- cs = [c] * len(xs)
- cs[0] = 'c'
- ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8)
- ax.set_xlabel('X')
- ax.set_ylabel('Y')
- ax.set_zlabel('Z')
- plt.show()
绘制结果如下: