规则:
每个细胞有两种状态-存活ON或死亡OFF,每个细胞与以自身为中心的周围八格细胞产生互动。(请想象九宫格)
1)人口过少:当周围低于2个(不包含2个)存活细胞时, 本单元活细胞死亡。
2)稳定:当周围有2个或3个存活细胞时, 本单元细胞保持原样。
3)人口过剩:当周围有3个以上的存活细胞时,本单元活细胞死亡。
4)繁殖:当周围有3个存活细胞时,本单元细胞存活/活化。
运行效果:(Conway产生图案包括:滑翔机、眨眼、ON和OFF)
#导入该项目要使用的模块 import sys,argparse #argparse是python的一个命令行解析包 import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.colors import ListedColormap yeah =('purple','yellow') cmap = ListedColormap(yeah) ON = 255 OFF = 0 vals = [ON, OFF] def randomGrid(N): """returns a grid of NxN random values""" return np.random.choice(vals, N*N, p=[0.2, 0.8]).reshape(N, N) #采用随机的初始状态 def addGlider(i, j, grid): """adds a glider with top-left cell at (i, j)""" glider = np.array([[0, 0, 255], [255, 0, 255], [0, 255, 255]]) # 3×3 的 numpy 数组定义了滑翔机图案(看上去是一种在网格中平稳穿越的图案)。 grid[i:i+3, j:j+3] = glider #可以看到如何用 numpy 的切片操作,将这种图案数组复制到模拟的二维网格中,它的左上角放在 i和 j指定的坐标,即用这个方法在网格的特定行和列增加一个图案, #实现环形边界条件 def update(frameNum, img, grid, N): newGrid = grid.copy() for i in range(N): for j in range(N): total = int((grid[i, (j-1)%N] + grid[i, (j+1)%N] + grid[(i-1)%N, j] + grid[(i+1)%N, j] + grid[(i-1)%N, (j-1)%N] + grid[(i-1)%N, (j+1)%N] + grid[(i+1)%N, (j-1)%N] + grid[(i+1)%N, (j+1)%N])/255) #因为需要检测网格的 8个边缘。更简洁的方式是用取模(%)运算符,可以用这个运算符让值在边缘折返 # Conway实现规则 :生命游戏的规则基于相邻细胞的 ON 或 OFF 数目。为了简化这些规则的应用,可以计算出处于 ON 状态的相邻细胞总数。 if grid[i, j] == ON: if (total < 2) or (total > 3): newGrid[i, j] = OFF else: if total == 3: newGrid[i, j] = ON # update data img.set_data(newGrid) grid[:] = newGrid[:] return img, #向程序发送命令行参数,mian() def main(): # command line arguments are in sys.argv[1], sys.argv[2], ... # sys.argv[0] is the script name and can be ignored # parse arguments parser = argparse.ArgumentParser(description="Runs Conway's Game of Life simulation.") # add arguments parser.add_argument('--grid-size', dest='N', required=False) #定义了可选参数,指定模拟网格大小N parser.add_argument('--mov-file', dest='movfile', required=False) #指定保存.mov 文件的名称 parser.add_argument('--interval', dest='interval', required=False) #设置动画更新间隔的毫秒数 parser.add_argument('--glider', action='store_true', required=False) #用滑翔机图案开始模拟 parser.add_argument('--gosper', action='store_true', required=False) args = parser.parse_args() #初始化模拟 # set grid size N = 100 if args.N and int(args.N) > 8: N = int(args.N) # set animation update interval updateInterval = 50 if args.interval: updateInterval = int(args.interval) # declare grid grid = np.array([]) # check if "glider" demo flag is specified,设置初始条件,要么是默认的随机图案,要么是滑翔机图案。 if args.glider: grid = np.zeros(N*N).reshape(N, N) #创建 N×N 的零值数组, addGlider(1, 1, grid) #调用 addGlider()方法,初始化带有滑翔机图案的网格 else: # populate grid with random on/off - more off than on grid = randomGrid(N) # 设置动画 fig, ax = plt.subplots(facecolor='pink') #配置 matplotlib 的绘图和动画参数 img = ax.imshow(grid,cmap=cmap, interpolation='nearest') #用plt.show()方法将这个矩阵的值显示为图像,并给 interpolation 选项传入'nearest'值,以得到尖锐的边缘(否则是模糊的) ani = animation.FuncAnimation(fig, update, fargs=(img, grid, N, ),#animation.FuncAnimation()调用函数 update(),该函数在前面的程序中定义,根据 Conway 生命游戏的规则,采用环形边界条件来更新网格。 frames=10, interval=updateInterval, save_count=50) # number of frames? # set the output file if args.movfile: ani.save(args.movfile, fps=30, extra_args=['-vcodec', 'libx264']) plt.show() # call main if __name__ == '__main__': main()
运行-cmd,相应目录下输入python 生命游戏.py即可,如下图:
显示如下: