一、Lambda表达式和函数式接口
很多语言里面都应用了lambda表达式,因为写起来简单,java8也引入了这一新特性,最简单的表达式可由逗号分割参数列表、“->”符号和语句块组成,例如:
Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.println( e ) );
只有一个函数的接口可以称他为函数接口,其产生是为了更好的与Lambda表达式结合,这样的接口可以隐式转化为Lambda表达式,Java8还提供了一个注解@Functionallnterface
@FunctionalInterface public interface Functional {
void method();}
不过,默认方法和静态方法不会破坏函数式接口的定义,如下代码依然合法
@FunctionalInterface public interface FunctionalDefaultMethods { void method(); default void defaultMethod() { } }
二、接口的默认方法和静态方法
Java8里的接口内可以定义默认方法和静态方法
在实现接口的时候,默认方法不需要实现但是可以Override
由于JVM上的默认方法的实现在字节码层面提供了支持,因此效率非常高。默认方法允许在不打破现有继承体系的基础上改进接口。该特性在官方库中的应用是:给java.util.Collection接口添加新方法,如stream()、parallelStream()、forEach()和removeIf()等等。
三、重复注释
注释从Java5引入并在各个框架中被广泛使用,但是在同一个地方不能多次使用同一个注解。
Java8打破了这个限制引入了重复注解的概念,允许在同一个地方多次使用同一个注解
在Java 8中使用@Repeatable注解定义重复注解,实际上,这并不是语言层面的改进,而是编译器做的一个trick,底层的技术仍然相同。可以利用下面的代码说明:
package com.javacodegeeks.java8.repeatable.annotations; import java.lang.annotation.ElementType; import java.lang.annotation.Repeatable; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; public class RepeatingAnnotations { @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) public @interface Filters { Filter[] value(); } @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) @Repeatable( Filters.class ) public @interface Filter { String value(); }; @Filter( "filter1" ) @Filter( "filter2" ) public interface Filterable { } public static void main(String[] args) { for( Filter filter: Filterable.class.getAnnotationsByType( Filter.class ) ) { System.out.println( filter.value() ); } } }
这段代码在注释Fileter添加了注释@Repeatable,表示@Fileter可以重复注释在一个地方,而getAnnotetionsByType()这个方法表示可以返回有有某个类型的重复注解,例如Filterable.class.getAnnoation(Filters.class)将返回两个Filter实例。
四、拓宽注解类型的应用场景
Java 8拓宽了注解的应用场景。现在,注解几乎可以使用在任何元素上:局部变量、接口类型、超类和接口实现类,甚至可以用在函数的异常定义上。
ElementType.TYPE_USER和ElementType.TYPE_PARAMETER是Java 8新增的两个注解,用于描述注解的使用场景。Java 语言也做了对应的改变,以识别这些新增的注解。
五、Optional
ava应用中最常见的bug就是空值异常。在Java 8之前,Google Guava引入了Optionals类来解决NullPointerException,从而避免源码被各种null检查污染,以便开发者写出更加整洁的代码。Java 8也将Optional加入了官方库。
Optional仅仅是一个容易:存放T类型的值或者null。它提供了一些有用的接口来避免显式的null检查。
//如果username为空,则isPresent返回值为false,否则为true System.out.println("this value is :"+username.isPresent()); //如果username为空,则orElseGet返回值为箭头后的东西,否则返回value值 System.out.println("User Name: " + username.orElseGet( () -> "[none]" )); //map()方法可以将现有的Opetional实例的值转换成新的值;orElse()方法与orElseGet()方法类似,但是在持有null的时候返回传入的默认值。 System.out.println(username.map( s -> "Hey " + s + "!" ).orElse( "Hey Stranger!" ));如果Optional实例持有一个非空值,则isPresent()方法返回true,否则返回false;orElseGet()方法,Optional实例持有null,则可以接受一个lambda表达式生成的默认值;map()方法可以将现有的Opetional实例的值转换成新的值;orElse()方法与orElseGet()方法类似,但是在持有null的时候返回传入的默认值。
六、Streams
新增的Stream API(java.util.stream)将生成环境的函数式编程引入了Java库中。这是目前为止最大的一次对Java库的完善,以便开发者能够写出更加有效、更加简洁和紧凑的代码。
Steam API极大得简化了集合操作(后面我们会看到不止是集合),首先看下这个叫Task的类:
public class Streams { private enum Status { OPEN, CLOSED }; private static final class Task { private final Status status; private final Integer points; Task( final Status status, final Integer points ) { this.status = status; this.points = points; } public Integer getPoints() { return points; } public Status getStatus() { return status; } @Override public String toString() { return String.format( "[%s, %d]", status, points ); } } }
Task类有一个分数(或伪复杂度)的概念,另外还有两种状态:OPEN或者CLOSED。现在假设有一个task集合:
final Collection< Task > tasks = Arrays.asList( new Task( Status.OPEN, 5 ), new Task( Status.OPEN, 13 ), new Task( Status.CLOSED, 8 ) );
首先看一个问题:在这个task集合中一共有多少个OPEN状态的点?在Java 8之前,要解决这个问题,则需要使用foreach循环遍历task集合;但是在Java 8中可以利用steams解决:包括一系列元素的列表,并且支持顺序和并行处理。
final long totalPointsOfOpenTasks = tasks .stream() .filter( task -> task.getStatus() == Status.OPEN ) .mapToInt( Task::getPoints ) .sum(); System.out.println( "Total points: " + totalPointsOfOpenTasks );
运行这个方法的控制台输出是:
Total points: 18
这里有很多知识点值得说。首先,tasks集合被转换成steam表示;其次,在steam上的filter操作会过滤掉所有CLOSED的task;第三,mapToInt操作基于每个task实例的Task::getPoints方法将task流转换成Integer集合;最后,通过sum方法计算总和,得出最后的结果。
在学习下一个例子之前,还需要记住一些steams(点此更多细节)的知识点。Steam之上的操作可分为中间操作和晚期操作。
中间操作会返回一个新的steam——执行一个中间操作(例如filter)并不会执行实际的过滤操作,而是创建一个新的steam,并将原steam中符合条件的元素放入新创建的steam。
晚期操作(例如forEach或者sum),会遍历steam并得出结果或者附带结果;在执行晚期操作之后,steam处理线已经处理完毕,就不能使用了。在几乎所有情况下,晚期操作都是立刻对steam进行遍历。
steam的另一个价值是创造性地支持并行处理(parallel processing)。对于上述的tasks集合,我们可以用下面的代码计算所有任务的点数之和:
// Calculate total points of all tasks
final double totalPoints = tasks
.stream()
.parallel()
.map( task -> task.getPoints() ) // or map( Task::getPoints )
.reduce( 0, Integer::sum );
System.out.println( "Total points (all tasks): " + totalPoints );
这里我们使用parallel方法并行处理所有的task,并使用reduce方法计算最终的结果。控制台输出如下:
Total points(all tasks): 26.0
对于一个集合,经常需要根据某些条件对其中的元素分组。利用steam提供的API可以很快完成这类任务,代码如下:
// Group tasks by their status
final Map< Status, List< Task > > map = tasks
.stream()
.collect( Collectors.groupingBy( Task::getStatus ) );
System.out.println( map );
控制台的输出如下:
{CLOSED=[[CLOSED, 8]], OPEN=[[OPEN, 5], [OPEN, 13]]}
最后一个关于tasks集合的例子问题是:如何计算集合中每个任务的点数在集合中所占的比重,具体处理的代码如下:
// Calculate the weight of each tasks (as percent of total points)
final Collection< String > result = tasks
.stream() // Stream< String >
.mapToInt( Task::getPoints ) // IntStream
.asLongStream() // LongStream
.mapToDouble( points -> points / totalPoints ) // DoubleStream
.boxed() // Stream< Double >
.mapToLong( weigth -> ( long )( weigth * 100 ) ) // LongStream
.mapToObj( percentage -> percentage + "%" ) // Stream< String>
.collect( Collectors.toList() ); // List< String >
System.out.println( result );
控制台输出结果如下:
[19%, 50%, 30%]
最后,正如之前所说,Steam API不仅可以作用于Java集合,传统的IO操作(从文件或者网络一行一行得读取数据)可以受益于steam处理,这里有一个小例子:
final Path path = new File( filename ).toPath();
try( Stream< String > lines = Files.lines( path, StandardCharsets.UTF_8 ) ) {
lines.onClose( () -> System.out.println("Done!") ).forEach( System.out::println );
}
Stream的方法onClose 返回一个等价的有额外句柄的Stream,当Stream的close()方法被调用的时候这个句柄会被执行。Stream API、Lambda表达式还有接口默认方法和静态方法支持的方法引用,是Java 8对软件开发的现代范式的响应。
七、Date/Time API
Java 8通过发布新的Date-Time API (JSR 310)来进一步加强对日期与时间的处理。
在旧版的 Java 中,日期时间 API 存在诸多问题,其中有:
*非线程安全 − java.util.Date 是非线程安全的,所有的日期类都是可变的,这是Java日期类最大的问题之一。
*设计很差 − Java的日期/时间类的定义并不一致,在java.util和java.sql的包中都有日期类,此外用于格式化和解析的类在java.text包中定义。java.util.Date同时包含日期和时间,而java.sql.Date仅包含日期,将其纳入java.sql包并不合理。另外这两个类都有相同的名字,这本身就是一个非常糟糕的设计。
*时区处理麻烦 − 日期类并不提供国际化,没有时区支持,因此Java引入了java.util.Calendar和java.util.TimeZone类,但他们同样存在上述所有的问题。
Java 8 在 java.time 包下提供了很多新的 API。以下为两个比较重要的 API:
Local(本地) − 简化了日期时间的处理,没有时区的问题。
Zoned(时区) − 通过制定的时区处理日期时间。
新的java.time包涵盖了所有处理日期,时间,日期/时间,时区,时刻(instants),过程(during)与时钟(clock)的操作。
import java.time.LocalDate; import java.time.LocalTime; import java.time.LocalDateTime; import java.time.Month; public class Java8Tester { public static void main(String args[]){ Java8Tester java8tester = new Java8Tester(); java8tester.testLocalDateTime(); } public void testLocalDateTime(){ // 获取当前的日期时间 LocalDateTime currentTime = LocalDateTime.now(); System.out.println("当前时间: " + currentTime); LocalDate date1 = currentTime.toLocalDate(); System.out.println("date1: " + date1); Month month = currentTime.getMonth(); int day = currentTime.getDayOfMonth(); int seconds = currentTime.getSecond(); System.out.println("月: " + month +", 日: " + day +", 秒: " + seconds); LocalDateTime date2 = currentTime.withDayOfMonth(10).withYear(2012); System.out.println("date2: " + date2); // 12 december 2014 LocalDate date3 = LocalDate.of(2014, Month.DECEMBER, 12); System.out.println("date3: " + date3); // 22 小时 15 分钟 LocalTime date4 = LocalTime.of(22, 15); System.out.println("date4: " + date4); // 解析字符串 LocalTime date5 = LocalTime.parse("20:15:30"); System.out.println("date5: " + date5); } }
输出结果如下:
当前时间: 2016-04-15T16:55:48.668 date1: 2016-04-15 月: APRIL, 日: 15, 秒: 48 date2: 2012-04-10T16:55:48.668 date3: 2014-12-12 date4: 22:15 date5: 20:15:30
如果我们需要考虑到时区,就可以使用时区的日期时间API:
import java.time.ZonedDateTime; import java.time.ZoneId; public class Java8Tester { public static void main(String args[]){ Java8Tester java8tester = new Java8Tester(); java8tester.testZonedDateTime(); } public void testZonedDateTime(){ // 获取当前时间日期 ZonedDateTime date1 = ZonedDateTime.parse("2015-12-03T10:15:30+05:30[Asia/Shanghai]"); System.out.println("date1: " + date1); ZoneId id = ZoneId.of("Europe/Paris"); System.out.println("ZoneId: " + id); ZoneId currentZone = ZoneId.systemDefault(); System.out.println("当期时区: " + currentZone); } }
输出结果如下:
date1: 2015-12-03T10:15:30+08:00[Asia/Shanghai] ZoneId: Europe/Paris 当期时区: Asia/Shanghai
八、Nashorn JavaScript引擎
Java 8提供了新的Nashorn JavaScript引擎,使得我们可以在JVM上开发和运行JS应用。Nashorn JavaScript引擎是javax.script.ScriptEngine的另一个实现版本,这类Script引擎遵循相同的规则,允许Java和JavaScript交互使用,例子代码如下:
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName( "JavaScript" );
System.out.println( engine.getClass().getName() );
System.out.println( "Result:" + engine.eval( "function f() { return 1; }; f() + 1;" ) );
这个代码的输出结果如下:
jdk.nashorn.api.scripting.NashornScriptEngine
Result: 2
九、Base64
在Java 8中,Base64编码已经成为Java类库的标准。
Java 8 内置了 Base64 编码的编码器和解码器。
Base64工具类提供了一套静态方法获取下面三种BASE64编解码器:
*基本:输出被映射到一组字符A-Za-z0-9+/,编码不添加任何行标,输出的解码仅支持A-Za-z0-9+/。
*URL:输出映射到一组字符A-Za-z0-9+_,输出是URL和文件。
*MIME:输出隐射到MIME友好格式。输出每行不超过76字符,并且使用'\r'并跟随'\n'作为分割。编码输出最后没有行分割。
public class Base64s { public static void main(String args[]){ final String str = "我爱你"; final String encode = Base64.getEncoder().encodeToString(str.getBytes()); System.out.println(encode); final String decode = new String(Base64.getDecoder().decode(encode.getBytes())); System.out.println(decode); } }