【BZOJ 2654】tree

时间:2021-07-15 18:58:36

Description

  给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。
  题目保证有解。

Input

  第一行V,E,need分别表示点数,边数和需要的白色边数。
  接下来E行
  每行s,t,c,col表示这边的端点(点从0开始标号),边权,颜色(0白色1黑色)。

Output

  一行表示所求生成树的边权和。

Sample Input

2 2 1
0 1 1 1
0 1 2 0

Sample Output

2

HINT

数据规模和约定

  0:V<=10

  1,2,3:V<=15

  0,..,19:V<=50000,E<=100000

  所有数据边权为[1,100]中的正整数。

orz 王梦迪大神
【BZOJ 2654】tree
 #include<cstdio>
#include<algorithm>
using namespace std;
const int N=;
struct ee{int x,y,w,c;}e[N*];
int fa[N];
int ans,E,V,need,tot;
int root(int x){
if(fa[x]==x) return x;
fa[x]=root(fa[x]);return fa[x];
} bool cmp(ee a,ee b){
if(a.w==b.w) return a.c<b.c;
return a.w<b.w;
} int kls(){
tot=;int sum=,num=;
for(int i=;i<V;i++) fa[i]=i;
for(int i=;i<=E&&sum<V-;i++){
int xx=root(e[i].x),yy=root(e[i].y);
if(xx!=yy) fa[xx]=yy,sum++,tot+=e[i].w,num+=(e[i].c==);
}
return num;
}
int main(){
scanf("%d%d%d",&V,&E,&need);
int s,t,w,c;
for (int i=;i<=E;i++){
scanf("%d%d%d%d",&s,&t,&w,&c);
e[i].x=s;e[i].y=t;e[i].w=w;e[i].c=c;
}
int l=-,r=;
while(l<=r){
int mid=(l+r)>>;
for (int i=;i<=E;i++) if(e[i].c==)e[i].w+=mid;
sort(e+,e++E,cmp);
int h=kls();
if(h>=need) ans=(tot-need*mid),l=mid+;else r=mid-;
//ans这里要注意一下,1wa
for (int i=;i<=E;i++) if(e[i].c==)e[i].w-=mid;
}
printf("%d",ans);
}