04-树5 Root of AVL Tree + AVL树操作集

时间:2022-01-08 18:55:37

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

04-树5 Root of AVL Tree + AVL树操作集     04-树5 Root of AVL Tree + AVL树操作集

04-树5 Root of AVL Tree + AVL树操作集     04-树5 Root of AVL Tree + AVL树操作集

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer NN (\le 20≤20) which is the total number of keys to be inserted. Then NN distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print the root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

/*!
* \file 04-树5 Root of AVL Tree.cpp
*
* \author ranjiewen
* \date 2017/04/01 18:54
*
*
*/ #include <stdio.h>
#include <stdlib.h> typedef struct AVLNode *Position;
typedef Position AVLTree;
typedef int ElementType;
struct AVLNode{
ElementType Data;
AVLTree Left;
AVLTree Right;
int Height; //树高
}; int Max(int a, int b)
{
return a > b ? a : b;
} //可将程序中用到的GetTreeHeight()替换掉
int GetHeight(Position p)
{
if (!p)
return -;
return p->Height;
} int GetTreeHeight(AVLTree T)
{
int HL = , HR = ;
int Max_H = ;
if (T)
{
if (T->Left)
{
HL = GetTreeHeight(T->Left);
}
if (T->Right)
{
HR = GetTreeHeight(T->Right);
}
Max_H = (HL > HR) ? (HL + ) : (HR + );
}
return Max_H;
} AVLTree SingleLeftRotation(AVLTree A)
{
//A必须有一个左子结点B
//将A与B做左单旋,更新A,B的高度,返回新的根节点B
AVLTree B = A->Left;
A->Left = B->Right;
B->Right = A;
A->Height = Max(GetTreeHeight(A->Left), GetTreeHeight(A->Right)) + ;
B->Height = Max(GetTreeHeight(B->Left), A->Height) + ;
return B;
} AVLTree SingleRightRotation(AVLTree A)
{
//A必须有一个右子节点B
//将A,B做右单旋,更新A,B的高度,返回新的根节点B
AVLTree B = A->Right;
A->Right = B->Left;
B->Left = A;
A->Height = Max(GetTreeHeight(A->Left),GetTreeHeight(A->Right))+;
B->Height = Max(GetTreeHeight(B->Right), A->Height) + ; return B;
} AVLTree DoubleLeftRightRotation(AVLTree A)
{
//A必须有一个左子节点B,且B必须有一个右子节点C
//将A,B与C做两次单旋,返回新的根节点C //将B,C做右单旋,C被返回
A->Left = SingleRightRotation(A->Left);
//将A与C做左单旋,C被返回
return SingleLeftRotation(A);
} AVLTree DoubleRightLeftRotation(AVLTree A)
{
//A必须有一个右子节点B,且B必须有一个左子节点C //将B,C做左单旋,C被返回
A->Right = SingleLeftRotation(A->Right);
//将A,C做右单旋,C被返回
return SingleRightRotation(A);
} //将x插入到AVL树中,并且返回调整后的AVL树
AVLTree Insert(AVLTree T, ElementType x)
{
if (!T)
{
//若为空树,则新建包含一个结点的树
T = (AVLTree)malloc(sizeof(struct AVLNode));
T->Data = x;
T->Left = T->Right = NULL;
T->Height = ;
}
else if (x<T->Data)
{
//插入T的左子树
T->Left = Insert(T->Left,x);
//如果需要左旋
if (GetTreeHeight(T->Left)-GetTreeHeight(T->Right)==)
{
if (x < T->Left->Data) //需要左单旋
{
T = SingleLeftRotation(T);
}
else
T = DoubleLeftRightRotation(T); //左-右双旋
}
}
else if (x>T->Data)
{
T->Right = Insert(T->Right,x);
//如果需要右旋
if (GetTreeHeight(T->Left)-GetTreeHeight(T->Right)==-)
{
if (x>T->Right->Data) //右单旋
{
T = SingleRightRotation(T);
}
else
{
T = DoubleRightLeftRotation(T); //右-左双旋
}
}
}
// else x==T->Data 无需插入 //别忘了更新树高
T->Height = Max(GetTreeHeight(T->Left), GetTreeHeight(T->Right)) + ;
return T;
} static int FindMin(AVLTree T){
if (T == NULL){
return -;
}
while (T->Left != NULL){
T = T->Left;
}
return T->Data;
} //返回-1表示,树中没有该数据,删除失败,
int Delete(AVLTree *T, ElementType D){ //指针的指针
static Position tmp;
if (*T == NULL){
return -;
}
else{
//找到要删除的节点
if (D == (*T)->Data){
//删除的节点左右子支都不为空,一定存在前驱节点
if ((*T)->Left != NULL && (*T)->Right != NULL){ D = FindMin((*T)->Right);//找后继替换
(*T)->Data = D;
Delete(&(*T)->Right, D);//然后删除后继节点,一定成功 //在右子支中删除,删除后有可能左子支比右子支高度大2
if (GetHeight((*T)->Left) - GetHeight((*T)->Left) == ){
//判断哪一个左子支的的两个子支哪个比较高
if (GetHeight((*T)->Left->Left) >= GetHeight((*T)->Left->Right)){
*T=SingleRightRotation(*T);
}
else{
*T = DoubleLeftRightRotation(*T);
/*LeftRotate(&(*T)->left);
RightRotate(T);*/
}
}
}
else
if ((*T)->Left == NULL){//左子支为空
tmp = (*T);
(*T) = tmp->Right;
free(tmp);
return ;
}
else
if ((*T)->Right == NULL){//右子支为空
tmp = (*T);
(*T) = tmp->Right;
free(tmp);
return ;
}
}
else
if (D > (*T)->Data){//在右子支中寻找待删除的节点
if (Delete(&(*T)->Right, D) == -){
return -;//删除失败,不需要调整,直接返回
}
if (GetHeight((*T)->Left) - GetHeight((*T)->Right) == ){
if (GetHeight((*T)->Left->Left) >= GetHeight((*T)->Left->Right)){
*T=SingleRightRotation(*T);
}
else{
*T = DoubleLeftRightRotation(*T);
/*LeftRotate(&(*T)->left);
RightRotate(T);*/
}
}
}
else
if (D < (*T)->Data){//在左子支中寻找待删除的节点
if (Delete(&(*T)->Left, D) == -){
return -;
}
if (GetHeight((*T)->Right) - GetHeight((*T)->Right) == ){
if (GetHeight((*T)->Right->Right) >= GetHeight((*T)->Right->Left)){
*T=SingleLeftRotation(*T);
}
else{
*T = DoubleRightLeftRotation(*T);
/*RightRotate(&(*T)->right);
LeftRotate(T);*/
}
}
}
}
//更新当前节点的高度
(*T)->Height = Max(GetHeight((*T)->Left), GetHeight((*T)->Right)) + ;
//printf("%d\n", (*T)->Data);
return ;
} int main()
{
int N,data;
AVLTree root=nullptr;
scanf("%d", &N);
for (int i = ; i < N;i++)
{
scanf("%d", &data);
root = Insert(root, data);
}
printf("%d\n",root->Data); Delete(&root, );
printf("%d\n", root->Data); return ;
}
AVL树原理及实现 +B树