Time Limit: 1000MS | Memory Limit: 32768KB | 64bit IO Format: %lld & %llu |
Description
In a strange shop there are n types of coins of value A1, A2 ... An. You have to find the number of ways you can make K using the coins. You can use any coin at most K times.
For example, suppose there are three coins 1, 2, 5. Then if K = 5 the possible ways are:
11111
1112
122
5
So, 5 can be made in 4 ways.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing two integers n (1 ≤ n ≤ 100) and K (1 ≤ K ≤ 10000). The next line contains n integers, denoting A1, A2 ... An (1 ≤ Ai ≤ 500). All Ai will be distinct.
Output
For each case, print the case number and the number of ways K can be made. Result can be large, so, print the result modulo 100000007.
Sample Input
2
3 5
1 2 5
4 20
1 2 3 4
Sample Output
Case 1: 4
Case 2: 108
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define mod 100000007
int a[],c[],dp[];
int main()
{
int n,k,t,i,j,r,w;
scanf("%d",&t);
for(i=; i<=t; i++)
{
memset(dp,,sizeof(dp));
scanf("%d%d",&n,&k);
for(j=; j<=n; j++)scanf("%d",&a[j]);
dp[]=;
for(j=; j<=n; j++)
{
for(r=; r<=k; r++)
{
if(r+a[j]<=k)
{
dp[r+a[j]]+=dp[r],dp[r+a[j]]%=mod;
}
}
}
cout<<"Case "<<i<<": ";
cout<<dp[k]<<endl;
}
}