经典Robocode例子代码- -SnippetBot

时间:2022-10-07 18:55:13
经典Robocode例子代码  - -SnippetBot      看过了Robocode的文章,对Robocde有了个大概了解,现在我我们就一个经典的Robocode例子源代码来分析Robocode也java之间是多么的天衣无缝。     经典Robocode新手入门例子,包括了移动,雷达,炮管。。。,看完它并应用它,保你Robocode一日千里。 注:翻译风格有所改变,有部分没有进行翻译,有些加入了天翼.李(Skyala.Li)的心得。我们在此只注重原理,不重形式。 大家可自行看看没有翻译的部分,也正好学习外语嘛!最后引入了About Duelist,快打到世界第一的机器人发展过程的一段文字。 此物出天上,望君好收藏!源代码也可于此下载   package wind;import robocode.*;import java.awt.Color;/** * SnippetBot - a robot by Alisdair Owens * This bot includes all sorts of useful snippets.  It is not * designed to be a good fighter (although it does well 1v1), * just to show how certain things are done * Bits of code lifted from Nicator and Chrisbot * Conventions in this bot include: Use of radians throughout * Storing absolute positions of enemy bots rather than relative ones * Very little code in events * These are all good programming practices for robocode * There may also be methods that arent used; these might just be useful for you. */public class SnippetBot extends AdvancedRobot{    /**     * run: SnippetBot's default behavior     */    Enemy target;                   //our current enemy  代表对手,包括了对手的所有有用参数    final double PI = Math.PI;          //just a constant     int direction = 1;              //direction we are heading...1 = forward, -1 = backwards                                    //我们坦克车头的方向    double firePower;                   //the power of the shot we will be using - set by do firePower() 设置我们的火力     public void run()     {        target = new Enemy();               //实例化Enemy()类        target.distance = 100000;           //initialise the distance so that we can select a target        setColors(Color.red,Color.blue,Color.green);    //sets the colours of the robot        //the next two lines mean that the turns of the robot, gun and radar are independant        //让gun,radar独立于坦克车        setAdjustGunForRobotTurn(true);        setAdjustRadarForGunTurn(true);        turnRadarRightRadians(2*PI);            //turns the radar right around to get a view of the field 以弧度计算旋转一周                while(true)         {            doMovement();               //Move the bot 移动机器人            doFirePower();              //select the fire power to use 选择火力            doScanner();                //Oscillate the scanner over the bot 扫描            doGun();                    //move the gun to predict where the enemy will be 预测敌人,调整炮管            out.println(target.distance);                   fire(firePower);            //所有动作完成后,开火            execute();              //execute all commands  上面使用的都为AdvancedRobot类中的非阻塞调用                                    //控制权在我们,所有这里用阻塞方法返回控制给机器人        }    }     /*      * This simple function calculates the fire power to use (from 0.1 to 3)      * based on the distance from the target.  We will investigate the data structure      * holding the target data later.      */    void doFirePower()     {        firePower = 400/target.distance;//selects a bullet power based on our distance away from the target                                         //根据敌人距离来选择火力,因为本身前进,后退为300,所以火力不会过大    }     /*      * This is the movememnt function.  It will cause us      * to circle strafe the enemy (ie move back and forward,      * circling the enemy.  if you don't know what strafing means      * play more quake.      * The direction variable is global to the class.  Passing a      * negative number to setAhead causes the bot to go backwards      * 以目标主中心来回摆动      */    void doMovement()     {        if (getTime()%20 == 0)  //?过20的倍数时间就反转方向        {            //every twenty 'ticks'            direction *= -1;        //reverse direction            setAhead(direction*300);    //move in that direction        }        setTurnRightRadians(target.bearing + (PI/2)); //every turn move to circle strafe the enemy                                                       //每一时间周期以敌人为中心绕圆运动    }    /*    * this scanner method allows us to make our scanner track our target.    * it will track to where our target is at the moment, and some further    * in case the target has moved.  This way we always get up to the minute    * information on our target   雷达锁定目标    */    void doScanner()     {        double radarOffset;  //雷达偏移量        if (getTime() - target.ctime > 4) //???why来回扫了4个回合都没扫到意味失去了目标,再全扫一遍        {            //if we haven't seen anybody for a bit....            radarOffset = 360;      //rotate the radar to find a target        }         else         {            //next is the amount we need to rotate the radar by to scan where the target is now            //通过扫描决定雷达旋转的弧度,"见基本原理方向剖析及目标锁定www.robochina.org".雷达弧度-敌人角度得到两者相差为旋转值            radarOffset = getRadarHeadingRadians() - absbearing(getX(),getY(),target.x,target.y);            //this adds or subtracts small amounts from the bearing for the radar to produce the wobbling            //and make sure we don't lose the target            //在得到的角度中加或减一点角度,让雷达很小的范围内摆而不失去目标            if (radarOffset < 0)            radarOffset -= PI/8;  //(0.375)            else            radarOffset += PI/8;         }        //turn the radar        setTurnRadarLeftRadians(NormaliseBearing(radarOffset)); //左转调整转动角度到PI内    }    /*    * This simple method moves the gun to the bearing that we predict the    * enemy will be by the time our bullet will get there.    * the 'absbearing' method can be found in the helper functions section    * the nextX and nextY method can be found in the 'Enemy' class description    */    void doGun()     {        //works out how long it would take a bullet to travel to where the enemy is *now*        //this is the best estimation we have         //计算子弹到达目标的时间长speed = 20 - 3 * power;有计算公式,距离除速度=时间        long time = getTime() + (int)(target.distance/(20-(3*firePower)));        //offsets the gun by the angle to the next shot based on linear targeting provided by the enemy class        //以直线为目标,偏移子弹下一次发射的角度。(这样让子弹射空的几率减少。但对付不动的和做圆运动的机器人有问题)        //target.guesssX(),target.guessY()为目标移动后的坐标        double gunOffset = getGunHeadingRadians() - absbearing(getX(),getY(),target.guessX(time),target.guessY(time));        setTurnGunLeftRadians(NormaliseBearing(gunOffset));  //调整相对角度到2PI内    }    /*    * This set of helper methods.  You may find several of these very useful    * They include the ability to find the angle to a point.    */    //if a bearing is not within the -pi to pi range, alters it to provide the shortest angle    double NormaliseBearing(double ang)     {        if (ang > PI)        ang -= 2*PI;        if (ang < -PI)        ang += 2*PI;        return ang;    }    //if a heading is not within the 0 to 2pi range, alters it to provide the shortest angle    double NormaliseHeading(double ang)     {        if (ang > 2*PI)        ang -= 2*PI;        if (ang < 0)        ang += 2*PI;        return ang;    }    //returns the distance between two x,y coordinates '**'    //以两边长求得与对手之间的距离    public double getrange( double x1,double y1, double x2,double y2 )    {        double xo = x2-x1;        double yo = y2-y1;        double h = Math.sqrt( xo*xo + yo*yo );         return h;       }    //gets the absolute bearing between to x,y coordinates    //根据x,y的坐标求出绝对角度,见"坐标锁定"利用直角坐标系来反求出角度。???    public double absbearing( double x1,double y1, double x2,double y2 )    {        double xo = x2-x1;        double yo = y2-y1;        double h = getrange( x1,y1, x2,y2 );        if( xo > 0 && yo > 0 )        {            //反正弦定义,对边除斜边得弧度.以robocode中的绝对方向系及坐标系参照            //x,y为正右上角为0-90,x正y负右下角为90-180,x,y负左下角180-270,x负,y正右上角270-360            //此处要理解robocode中的绝对角度是上为0,下为180,如以中心为点划分象限则得到下面的结果            return Math.asin( xo / h );        }        if( xo > 0 && yo < 0 )        {            return Math.PI - Math.asin( xo / h ); //x为正,y为负第二象限角        }        if( xo < 0 && yo < 0 )        {            return Math.PI + Math.asin( -xo / h ); //第三象限内180+角度        }        if( xo < 0 && yo > 0 )        {            return 2.0*Math.PI - Math.asin( -xo / h ); //四象限360-角度        }        return 0;    }    /**    * onScannedRobot: What to do when you see another robot     * 扫描事件,也是初始化目标数据的过程    */    public void onScannedRobot(ScannedRobotEvent e)     {        //if we have found a closer robot....        if ((e.getDistance() < target.distance)||(target.name == e.getName()))         {            //the next line gets the absolute bearing to the point where the bot is            //求得对手的绝对弧度            double absbearing_rad = (getHeadingRadians()+e.getBearingRadians())%(2*PI);            //this section sets all the information about our target            target.name = e.getName();            //求得对手的x,y坐标,见"robocode基本原理之坐标锁定"文章            target.x = getX()+Math.sin(absbearing_rad)*e.getDistance(); //works out the x coordinate of where the target is            target.y = getY()+Math.cos(absbearing_rad)*e.getDistance(); //works out the y coordinate of where the target is            target.bearing = e.getBearingRadians();            target.head = e.getHeadingRadians();            target.ctime = getTime();               //game time at which this scan was produced 扫描到机器人的游戏时间            target.speed = e.getVelocity();         //得到敌人速度            target.distance = e.getDistance();        }    }    public void onRobotDeath(RobotDeathEvent e)     {        if (e.getName() == target.name)        target.distance = 10000; //this will effectively make it search for a new target    }    }  /** This class holds scan data so that we can remember where enemies were* and what they were doing when we last scanned then.* You could make a hashtable (with the name of the enemy bot as key)* or a vector of these so that you can remember where all of your enemies are* in relation to you.* This class also holds the guessX and guessY methods. These return where our targeting* system thinks they will be if they travel in a straight line at the same speed* as they are travelling now.  You just need to pass the time at which you want to know* where they will be.* 保存我们扫描到的目标的所有有用数据,也可用hashtable,vector方法处理所有和我们有关的目标数据(用于群战)* 中间的guessX,guessY方法是针对做直线均速运动机器人一个策略*/class Enemy {    /*     * ok, we should really be using accessors and mutators here,     * (i.e getName() and setName()) but life's too short.     */    String name;    public double bearing;    public double head;    public long ctime; //game time that the scan was produced    public double speed;    public double x,y;    public double distance;    public double guessX(long when)    {        //以扫描时和子弹到达的时间差 * 最大速度=距离, 再用对手的坐标加上移动坐标得到敌人移动后的坐标        long diff = when - ctime;        return x+Math.sin(head)*speed*diff; //目标移动后的坐标    }    public double guessY(long when)    {        long diff = when - ctime;        return y+Math.cos(head)*speed*diff;    }}  要想了解更多的相关资料请参考: Robocode 中华联盟(http://www.robochina.org)