I would like to filter a table bsp1
我想过滤一个bsp1表
g <- factor(c("Company 1", "Company 2", "Company 3", "Company 4", "Company 5"))
w <- factor(c("a", "b", "c", "a", "c"))
x <- c(28, 18, 25, NA, 21)
y <- c(80, NA, 74, 101, NA)
z <- c(170, 174, 183, NA, 185)
bsp1 <- data.frame(g, w, x, y, z)
colnames(bsp1) <- c("Company", "Sector", "Item 1", "Item 2", "Item 3")
rm(w, x, y, z)
bsp1
# Company Sector Item 1 Item 2 Item 3
# 1 Company 1 a 28 80 170
# 2 Company 2 b 18 NA 174
# 3 Company 3 c 25 74 183
# 4 Company 4 a NA 101 NA
# 5 Company 5 c 21 NA 185
based on a mapping table bsp2
基于映射表bsp2
sector <- factor(c("a", "b", "c"))
a <- c(1, 1, 1)
b <- c(NA, 1, NA)
c <- c(NA, NA, 1)
bsp2 <- data.frame(sector, a, b, c)
colnames(bsp2) <- c("Sector", "Item 1", "Item 2", "Item 3")
bsp2
# Sector Item 1 Item 2 Item 3
# 1 a 1 NA NA
# 2 b 1 1 NA
# 3 c 1 NA 1
the filter rule should be: For each sector in bsp2 for which the item is not NA, the rows in bsp1 from the respective sector with NA in the item should be removed.
过滤规则应该是:对于bsp2中不是NA的每个扇区,应该删除bsp1中包含NA的扇区中的行。
The desired outcome looks therefore like bsp3
因此,期望的结果看起来像bsp3
bsp3 <- bsp1[c(1, 3, 5),]
bsp3
# Company Sector Item 1 Item 2 Item 3
# 1 Company 1 a 28 80 170
# 3 Company 3 c 25 74 183
# 5 Company 5 c 21 NA 185
Company 2 was dropped, as item 2 is required for b. Line 5 was not dropped as item 2 is not required for sector 3.
公司2被删除,因为b需要项目2。第5行没有被删除,因为第3扇区不需要项目2。
I thought about an apply function for all sectors over bsp1 with a vector of the relevant columns derived with following function for the vector.
我想到了一个适用于bsp1上的所有扇区的函数,它有一个相关列的向量,这个向量有如下的函数。
a <- !is.na(bsp2[1,])
a <- which(a==c("TRUE"))
Unfortunately in the filter test of one vector I have a problem that b is interpreted as a Matrix.
不幸的是,在一个向量的过滤测试中,我有一个问题b被解释为一个矩阵。
b <- is.na(bsp1[, a])
c <- which(b==c("TRUE"))
reduced2016b <- data2013[-c,]
Even if I set up the vector manually, the filter result is not how I expect it. Would be great if anyone has an idea to solve this problem. Also partial steps would help me already.
即使我手动设置了向量,过滤结果也不是我期望的那样。如果有人有办法解决这个问题,那就太好了。同样,部分步骤也会帮助我。
Thank you in advance!
提前谢谢你!
2 个解决方案
#1
0
a very similar answer, to above, was just finishing it when it was being posted.
一个和上面非常相似的答案,是在发布的时候刚刚完成的。
you may want to define your data frames like so
您可能希望像这样定义数据帧
bsp1 <- data.frame(Company=factor(c("Company 1", "Company 2", "Company 3", "Company 4", "Company 5")),
Sector=factor(c("a", "b", "c", "a", "c")),
Item1=c(28, 18, 25, NA, 21),
Item2=c(80, NA, 74, 101, NA),
Item3= c(170, 174, 183, NA, 185))
and
和
bsp2 <- data.frame(Sector=factor(c("a", "b", "c")),
Item1=c(1, 1, 1),
Item2=c(NA, 1, NA),
Item3=c(NA, NA, 1))
then melt and merge bsp1 and bsp2
然后熔化并合并bsp1和bsp2
bsp1m <- melt(bsp1,id.vars=c("Company","Sector"))
bsp2m <- melt(bsp2,id.vars="Sector", value.name = "flag")
bsp3m <- merge(bsp1m,bsp2m,by=c("Sector","variable"))
and finally subset bsp1 based on for where you have an NA in bsp1m and a 1 in bsp2m
最后是bsp1的子集bsp2中有一个NA和一个1
bsp3 <- bsp1[!bsp1$Company %in% bsp3m$Company[is.na(bsp3m$value) & !is.na(bsp3m$flag)],]
#2
2
One way is to melt
both data frames, merge
by Sector and variable, and find which companies have NA
for value.x
and not NA
for value.y
, i.e.
一种方法是融化这两种数据框架,按部门和变量合并,找出哪些公司的价值是天生的。x而不是NA的值。y,即。
library(reshape2)
new_df <- merge(melt(bsp1), melt(bsp2), by = c('Sector', 'variable'))
ind <- as.character(new_df$Company[is.na(new_df$value.x) & !is.na(new_df$value.y)])
bsp1[!bsp1$Company %in% ind,]
# Company Sector Item 1 Item 2 Item 3
#1 Company 1 a 28 80 170
#3 Company 3 c 25 74 183
#5 Company 5 c 21 NA 185
#1
0
a very similar answer, to above, was just finishing it when it was being posted.
一个和上面非常相似的答案,是在发布的时候刚刚完成的。
you may want to define your data frames like so
您可能希望像这样定义数据帧
bsp1 <- data.frame(Company=factor(c("Company 1", "Company 2", "Company 3", "Company 4", "Company 5")),
Sector=factor(c("a", "b", "c", "a", "c")),
Item1=c(28, 18, 25, NA, 21),
Item2=c(80, NA, 74, 101, NA),
Item3= c(170, 174, 183, NA, 185))
and
和
bsp2 <- data.frame(Sector=factor(c("a", "b", "c")),
Item1=c(1, 1, 1),
Item2=c(NA, 1, NA),
Item3=c(NA, NA, 1))
then melt and merge bsp1 and bsp2
然后熔化并合并bsp1和bsp2
bsp1m <- melt(bsp1,id.vars=c("Company","Sector"))
bsp2m <- melt(bsp2,id.vars="Sector", value.name = "flag")
bsp3m <- merge(bsp1m,bsp2m,by=c("Sector","variable"))
and finally subset bsp1 based on for where you have an NA in bsp1m and a 1 in bsp2m
最后是bsp1的子集bsp2中有一个NA和一个1
bsp3 <- bsp1[!bsp1$Company %in% bsp3m$Company[is.na(bsp3m$value) & !is.na(bsp3m$flag)],]
#2
2
One way is to melt
both data frames, merge
by Sector and variable, and find which companies have NA
for value.x
and not NA
for value.y
, i.e.
一种方法是融化这两种数据框架,按部门和变量合并,找出哪些公司的价值是天生的。x而不是NA的值。y,即。
library(reshape2)
new_df <- merge(melt(bsp1), melt(bsp2), by = c('Sector', 'variable'))
ind <- as.character(new_df$Company[is.na(new_df$value.x) & !is.na(new_df$value.y)])
bsp1[!bsp1$Company %in% ind,]
# Company Sector Item 1 Item 2 Item 3
#1 Company 1 a 28 80 170
#3 Company 3 c 25 74 183
#5 Company 5 c 21 NA 185