[NOIP2014]寻找道路(图论)

时间:2021-07-15 18:32:23

题目描述

在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:

1 .路径上的所有点的出边所指向的点都直接或间接与终点连通。

2 .在满足条件1 的情况下使路径最短。

注意:图G 中可能存在重边和自环,题目保证终点没有出边。

请你输出符合条件的路径的长度。

输入输出格式

输入格式:

输入文件名为road .in。

第一行有两个用一个空格隔开的整数n 和m ,表示图有n 个点和m 条边。

接下来的m 行每行2 个整数x 、y ,之间用一个空格隔开,表示有一条边从点x 指向点y 。

最后一行有两个用一个空格隔开的整数s 、t ,表示起点为s ,终点为t 。

输出格式:

输出文件名为road .out 。

输出只有一行,包含一个整数,表示满足题目᧿述的最短路径的长度。如果这样的路径不存在,输出- 1 。

输入输出样例

输入样例#1:
3 2
1 2
2 1
1 3
输出样例#1:
-1
输入样例#2:
6 6
1 2
1 3
2 6
2 5
4 5
3 4
1 5
输出样例#2:
3

说明

解释1:

[NOIP2014]寻找道路(图论)

如上图所示,箭头表示有向道路,圆点表示城市。起点1 与终点3 不连通,所以满足题

目᧿述的路径不存在,故输出- 1 。

解释2:

[NOIP2014]寻找道路(图论)

如上图所示,满足条件的路径为1 - >3- >4- >5。注意点2 不能在答案路径中,因为点2连了一条边到点6 ,而点6 不与终点5 连通。

对于30%的数据,0<n≤10,0<m≤20;

对于60%的数据,0<n≤100,0<m≤2000;

对于100%的数据,0<n≤10,000,0<m≤200,000,0<x,y,s,t≤n,x≠t。

  • noip2014 day2t2,图论题,不过貌似比较简单。
  • 已知只有所有出边都直接或间接指向终点的点才可能被选择,所以就建反边,从终点想起点扫,dfs,bfs均可,在把所有终点不能达到的点打上标记,这些点均不可备选择,并且在反边图中这些点所指向的点也不能被选择(因为在正边图中这些点指向标记点)。因此可以删去图中不符合要求的点,然后跑最短路即可。
  • spfa,heap+dijkstra均可,bfs,dfs复杂度为O(n),spfa复杂度为O(ke),heap+dijkstra复杂度为O(nloge),均可通过该题。
 #include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std; int tot,total,n,m,ss,tt,l[],r[],pre[],last[],other[];
int que[],d[];
bool judge[],vis[],point[]; void add(int u,int v) {
pre[++tot]=last[u];
last[u]=tot;
other[tot]=v;
} void bfs(int x) {
int h=,t=;
que[]=x;
vis[x]=;
point[x]=;
total++;
while (h<t) {
int cur=que[++h];
for (int p=last[cur]; p; p=pre[p]) {
int q=other[p];
if (!vis[q]) {
vis[q]=;
que[++t]=q;
total++;
point[q]=;
}
}
}
} void spfa(int x) {
int h=,t=;
que[]=x;
memset(d,,sizeof d);
d[x]=;
while (h<t) {
int cur=que[++h];
vis[cur]=;
for (int p=last[cur]; p; p=pre[p]) {
int q=other[p];
if (!point[q]) continue;
if (judge[q]) continue;
if (d[q]>d[cur]+) {
d[q]=d[cur]+;
if (!vis[q]) {
vis[q]=;
que[++t]=q;
}
}
}
}
} int main() {
scanf("%d%d",&n,&m);
for (int i=; i<=m; i++) scanf("%d%d",&l[i],&r[i]);
scanf("%d%d",&ss,&tt);
for (int i=; i<=m; i++) add(r[i],l[i]);
bfs(tt);
if (!point[ss]) {
printf("%d",-);
return ;
}
for (int i=; i<=n; i++) {
if (point[i]) continue;
for (int p=last[i]; p; p=pre[p]) {
int q=other[p];
judge[q]=;
}
}
memset(que,,sizeof que);
memset(vis,,sizeof vis);
memset(last,,sizeof last);
tot=;
for (int i=; i<=m; i++) add(l[i],r[i]);
spfa(ss);
printf("%d",d[tt]);
return ;
}