MapReduce功能实现十---join

时间:2022-02-22 18:24:33

MapReduce功能实现系列:

MapReduce功能实现一---Hbase和Hdfs之间数据相互转换

MapReduce功能实现二---排序、Top N

MapReduce功能实现三---小综合(从hbase中读取数据统计并在hdfs中降序输出Top 3)

MapReduce功能实现四---去重(Distinct)、计数(Count)

MapReduce功能实现五---最大值(Max)、求和(Sum)、平均值(Avg)

MapReduce功能实现六---小综合(多个job串行处理计算平均值)

MapReduce功能实现七---分区(Partition)

MapReduce功能实现八---Pv、Uv

MapReduce功能实现九---倒排索引(Inverted Index)

MapReduce功能实现十---join


前言:对两份数据data1和data2进行关键词连接是一个很通用的问题,在关系型数据库中Join是非常常见的操作,各种优化手段已经到了极致。在海量数据的环境下,不可避免的也会碰到这种类型的需求,例如在数据分析时需要从不同的数据源中获取数据。不同于传统的单机模式,在分布式存储下采用MapReduce编程模型,也有相应的处理措施和优化方法。


1.模拟数据:
[hadoop@h71 q1]$ vi mz.txt
zs 1
ls 2
ww 3
zl 2
qq 2
hh 1
[hadoop@h71 q1]$ vi jg.txt
1 beijing
2 tianjing
3 shanghai


2.将数据上传到hdfs上:
[hadoop@h71 q1]$ hadoop fs -mkdir /user/hadoop/m_in

[hadoop@h71 q1]$ hadoop fs -put mz.txt /user/hadoop/m_in
[hadoop@h71 q1]$ hadoop fs -put jg.txt /user/hadoop/m_in


3.[hadoop@h71 q1]$ vi MTjoin.java

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class MTjoin {

public static int time = 0;
/*
* 在map中先区分输入行属于左表还是右表,然后对两列值进行分割,
* 保存连接列在key值,剩余列和左右表标志在value中,最后输出
*/
public static class Map extends Mapper<Object, Text, Text, Text> {
// 实现map函数
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();// 每行文件
String relationtype = new String();// 左右表标识
// 输入文件首行,不处理
if (line.contains("name") == true || line.contains("addressed") == true) {
return;
}
// 输入的一行预处理文本
StringTokenizer itr = new StringTokenizer(line);
String mapkey = new String();
String mapvalue = new String();
int i = 0;
while (itr.hasMoreTokens()) {
// 先读取一个单词
String token = itr.nextToken();
// 判断该地址ID就把存到"values[0]"
//charAt() 方法可返回指定位置的字符
if (token.charAt(0) >= '0' && token.charAt(0) <= '9') {
mapkey = token;
if (i > 0) {
relationtype = "1";
} else {
relationtype = "2";
}
//break的作用是跳出当前循环块,continue用于结束循环体中其后语句的执行
continue;
}
// 存工厂名
mapvalue += token + " ";
i++;
}
// 输出左右表
context.write(new Text(mapkey), new Text(relationtype + "+"+ mapvalue));
}
}
/*
* reduce解析map输出,将value中数据按照左右表分别保存,
   * 然后求出笛卡尔积,并输出。
*/
public static class Reduce extends Reducer<Text, Text, Text, Text> {
// 实现reduce函数
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
// 输出表头
if (0 == time) {
context.write(new Text("name"), new Text("address"));
time++;
}
int factorynum = 0;
String[] factory = new String[10];
int addressnum = 0;
String[] address = new String[10];
Iterator ite = values.iterator();
while (ite.hasNext()) {
String record = ite.next().toString();
int len = record.length();
int i = 2;
if (0 == len) {
continue;
}
// 取得左右表标识
char relationtype = record.charAt(0);
// 左表
if ('1' == relationtype) {
factory[factorynum] = record.substring(i);
factorynum++;
}
// 右表
if ('2' == relationtype) {
address[addressnum] = record.substring(i);
addressnum++;
}
}
// 求笛卡尔积
if (0 != factorynum && 0 != addressnum) {
for (int m = 0; m < factorynum; m++) {
for (int n = 0; n < addressnum; n++) {
// 输出结果
context.write(new Text(factory[m]),
new Text(address[n]));
}
}
}
}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
// 这句话很关键
conf.set("mapred.jar", "mt.jar");
String[] ioArgs = new String[] { "m_in", "m_out" };
String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: Multiple Table Join <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "Multiple Table Join");
job.setJarByClass(MTjoin.class);

// 设置Map和Reduce处理类
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);

// 设置输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);

// 设置输入和输出目录
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

4.执行:
[hadoop@h71 q1]$ /usr/jdk1.7.0_25/bin/javac MTjoin.java
[hadoop@h71 q1]$ /usr/jdk1.7.0_25/bin/jar cvf xx.jar MTjoin*class
[hadoop@h71 q1]$ hadoop jar xx.jar MTjoin


5.查看结果:
[hadoop@h71 q1]$ hadoop fs -cat /user/hadoop/m_out/part-r-00000
name    address
hh      beijing
zs      beijing
qq      tianjing
zl      tianjing
ls      tianjing
ww      shanghai