MapReduce编程小案例.1st—求取手机号码上下限及总流量
利用MapReduce处理一个小案例,如下是一批手机号码上网所保存在日志的流量信息:
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200 1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200 1363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 200 1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 视频网站 15 12 1527 2106 200 1363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 200 1363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200 1363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 信息安全 20 20 3156 2936 200 1363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 200 1363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站点统计 24 9 6960 690 200 1363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜索引擎 28 27 3659 3538 200 1363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站点统计 3 3 1938 180 200 1363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 200 1363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 200 1363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 综合门户 15 12 1938 2910 200 1363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 200 1363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 综合门户 57 102 7335 110349 200 1363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜索引擎 21 18 9531 2412 200 1363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜索引擎 69 63 11058 48243 200 1363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 200 1363157985066 13726238888 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157993055 13560436666 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200
设计Mapper类
package cn.edu360.mr.flow; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean>{ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] fields = line.split("\t"); String phone = fields[1]; int upFlow = Integer.parseInt(fields[fields.length-3]); int dFlow = Integer.parseInt(fields[fields.length-2]); context.write(new Text(phone), new FlowBean(phone, upFlow, dFlow)); } }
设计Reducer类
package cn.edu360.mr.flow; import java.io.IOException; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean>{ @Override protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context) throws IOException, InterruptedException { int upSum = 0; int dSum = 0; for (FlowBean value : values) { upSum += value.getUpFlow(); dSum += value.getdFlow(); } context.write(key, new FlowBean(key.toString(), upSum, dSum)); } }
创建一个类封装【手机号码以及流量的信息】,要注意实现序列化
package cn.edu360.mr.flow; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Writable; public class FlowBean implements Writable{ private int upFlow; private int dFlow; private String phone; private int amountFlow; public FlowBean() { } public FlowBean(String phone, int upFlow, int dFlow) { this.phone = phone; this.upFlow = upFlow; this.dFlow = dFlow; this.amountFlow = upFlow + dFlow; } public int getUpFlow() { return upFlow; } public void setUpFlow(int upFlow) { this.upFlow = upFlow; } public int getdFlow() { return dFlow; } public void setdFlow(int dFlow) { this.dFlow = dFlow; } public String getPhone() { return phone; } public void setPhone(String phone) { this.phone = phone; } public int getAmountFlow() { return amountFlow; } public void setAmountFlow(int amountFlow) { this.amountFlow = amountFlow; } /* * hadoop系统在序列化该类的对象时要调用的方法 */ //反序列化 public void readFields(DataInput in) throws IOException { this.upFlow = in.readInt(); this.phone = in.readUTF(); this.dFlow = in.readInt(); this.amountFlow = in.readInt(); } //序列化 public void write(DataOutput out) throws IOException { out.writeInt(upFlow); out.writeUTF(phone); out.writeInt(dFlow); out.writeInt(amountFlow); } @Override public String toString() { return this.phone + "," + this.upFlow + "," + this.dFlow + "," + this.amountFlow; } }
PS:添加一个新的功能,覆写一下MapTask分配kv给ReduceTask的规则
package cn.edu360.mr.flow; import java.util.HashMap; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Partitioner; /* * 本类是提供给MapTask用的 * MapTask通过这个类的getPartition方法,来计算它所产生的每一对kv数据该分发哪一个reduce task * @author Downey */ public class ProvincePartitioner extends Partitioner<Text, FlowBean>{ static HashMap<String, Integer> codeMap = new HashMap<String, Integer>(); static { codeMap.put("135", 0); codeMap.put("136", 1); codeMap.put("137", 2); codeMap.put("138", 3); codeMap.put("139", 4); } @Override public int getPartition(Text key, FlowBean value, int numPartitions) { Integer code = codeMap.get(key.toString().substring(0, 3)); return code == null?5:code; } }
最后实现JobSubmitter类的设计
package cn.edu360.mr.flow; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class JobSubmitter { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(JobSubmitter.class); job.setMapperClass(FlowCountMapper.class); job.setReducerClass(FlowCountReducer.class); //设置参数:maptask在做数据分区时,用哪个分区逻辑类(如果不指定的话,它会默认的HashPartitioner) job.setPartitionerClass(ProvincePartitioner.class); //由于我们的ProvincePartitioner可能会产生6种分区号, job.setNumReduceTasks(6); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); FileInputFormat.setInputPaths(job, new Path("F:\\mrdata\\flow\\input")); FileOutputFormat.setOutputPath(job, new Path("F:\\mrdata\\flow\\province-output")); job.waitForCompletion(true); } }