有这样一个实际的问题需要要通过hadoop的来解决一下。
有一个学生成绩表,有学生姓名 和成绩格式如下
zs 89zs 100
ls 98
ls 100
zs 20
ww 89
ww 67
ls 30
ww 20
一个学生 有多个科目,有不同的成绩。
需要对每个同学的成绩求平均值。
同时,把这个student.txt 上传到 hadoop的 file System 中。
./bin/hadoop fs -put ~/file/student.txt
代码如下:
package com.picc.test;我在eclipse 上配置参数。会报异常。所以,我把以上代码导出成 avgscore.jar
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.picc.mapreducetest.MyMapReduceTest;
/***
* 定义一个AvgScore 求学生的平均值 要实现一个Tool 工具类,是为了初始化一个hadoop配置实例
*/
public class AvgScore implements Tool{
public static final Logger log=LoggerFactory.getLogger(AvgScore.class);
Configuration configuration;
// 是版本 0.20.2的实现
public static class MyMap extends Mapper<Object, Text, Text, IntWritable>{
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String stuInfo = value.toString();//将输入的纯文本的数据转换成String
System.out.println("studentInfo:"+stuInfo);
log.info("MapSudentInfo:"+stuInfo);
//将输入的数据先按行进行分割
StringTokenizer tokenizerArticle = new StringTokenizer(stuInfo, "\n");
//分别对每一行进行处理
while(tokenizerArticle.hasMoreTokens()){
// 每行按空格划分
StringTokenizer tokenizer = new StringTokenizer(tokenizerArticle.nextToken());
String name = tokenizer.nextToken();//学生姓名
String score = tokenizer.nextToken();//学生成绩
Text stu = new Text(name);
int intscore = Integer.parseInt(score);
log.info("MapStu:"+stu.toString()+" "+intscore);
context.write(stu,new IntWritable(intscore));//输出学生姓名和成绩
}
}
}
public static class MyReduce extends Reducer<Text, IntWritable, Text, IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> values,Context context)
throws IOException, InterruptedException {
int sum=0;
int count=0;
Iterator<IntWritable> iterator= values.iterator();
while(iterator.hasNext()){
sum+=iterator.next().get();//计算总分
count++;//统计总科目
}
int avg= (int)sum/count;
context.write(key,new IntWritable(avg));//输出学生姓名和平均值
}
}
public int run(String [] args) throws Exception{
Job job = new Job(getConf());
job.setJarByClass(AvgScore.class);
job.setJobName("avgscore");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(MyMap.class);
job.setCombinerClass(MyReduce.class);
job.setReducerClass(MyReduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));//设置输入文件路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));//设置输出文件路径
boolean success= job.waitForCompletion(true);
return success ? 0 : 1;
}
public static void main(String[] args) throws Exception {
//在eclipse 工具上配置输入和输出参数
int ret = ToolRunner.run(new AvgScore(), args);
System.exit(ret);
}
@Override
public Configuration getConf() {
return configuration;
}
@Override
public void setConf(Configuration conf) {
conf = new Configuration();
configuration=conf;
}
}
把这个avgscore.jar 放到hadoop 0.20.2/目录下。
输入命令 ./bin/hadoop jar avgscore.jar com/picc/test/AvgScore input/student.txt out1
结果 图:
和计算的结果 没有错。
以下是对 以上算法的一个分析:
package com.picc.test;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.picc.mapreducetest.MyMapReduceTest;
public class AvgScore implements Tool{
public static final Logger log=LoggerFactory.getLogger(AvgScore.class);
Configuration configuration;
public static class MyMap extends Mapper<Object, Text, Text, IntWritable>{
Configuration config = HBaseConfiguration.create();//获取hbase 的操作上下文
private static IntWritable linenum = new IntWritable(1);//初始化一个变量值
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String stuInfo = value.toString();
System.out.println("studentInfo:"+stuInfo);
log.info("MapSudentInfo:"+stuInfo);
StringTokenizer tokenizerArticle = new StringTokenizer(stuInfo, "\n");
while(tokenizerArticle.hasMoreTokens()){
StringTokenizer tokenizer = new StringTokenizer(tokenizerArticle.nextToken());
String name = tokenizer.nextToken();
String score = tokenizer.nextToken();
Text stu = new Text(name);
int intscore = Integer.parseInt(score);
log.info("MapStu:"+stu.toString()+" "+intscore);
context.write(stu,new IntWritable(intscore)); //zs 90
//create 'stu','name','score'
HTable table=new HTable(config,"stu");
byte[] row1 = Bytes.toBytes("name"+linenum);
Put p1=new Put(row1);
byte[] databytes = Bytes.toBytes("name");
p1.add(databytes, Bytes.toBytes("1"), Bytes.toBytes(name));
table.put(p1);//put 'stu','name','name:1','zs'
table.flushCommits();
byte [] row2 = Bytes.toBytes("score"+linenum);
Put p2 = new Put(row2);
byte [] databytes2 = Bytes.toBytes("score");
p2.add(databytes2, Bytes.toBytes("1"), Bytes.toBytes(score));
table.put(p2);//put 'stu','score','score:1','90'
table.flushCommits();
linenum= new IntWritable(linenum.get()+1);//对变量值进行变值处理
}
}
}
public static class MyReduce extends Reducer<Text, IntWritable, Text, IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> values,Context context)
throws IOException, InterruptedException {
int sum=0;
int count=0;
Iterator<IntWritable> iterator= values.iterator();
while(iterator.hasNext()){
sum+=iterator.next().get();
count++;
}
int avg= (int)sum/count;
context.write(key,new IntWritable(avg));
}
}
public int run(String [] args) throws Exception{
Job job = new Job(getConf());
job.setJarByClass(AvgScore.class);
job.setJobName("avgscore");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(MyMap.class);
job.setCombinerClass(MyReduce.class);
job.setReducerClass(MyReduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean success= job.waitForCompletion(true);
return success ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int ret = ToolRunner.run(new AvgScore(), args);
System.exit(ret);
}
@Override
public Configuration getConf() {
return configuration;
}
@Override
public void setConf(Configuration conf) {
conf = new Configuration();
configuration=conf;
}
}
这个代码是对上一个代码的调试分析处理后的代码,
把map 处理的过程放到的数据库中,在MapReduce 中处理 hbase数据时,需要 把hbase 的数据包放到hadoop的lib 包下。
处理的结果,见视图:
注意,在hbase数据库中 row中的Key是不能相同的,否则会 后一条会覆盖前一条值。需要保让其唯一性。
name1 和score1 是一条数据,这两列表是一个学生的成绩,和关系型数据库不同,以列值存储,思想需要转换一下。