For example: I have a = np.array([123, 412, 444])
and b = np.array([123, 321])
例如:a = np。数组([123,412,444])和b = np。阵列((123、321))
I want to know if a
contains all the elements in b
. Is there a simple operation for this? In this case that would not be true.
我想知道a是否包含了b中的所有元素,这有一个简单的操作吗?在这种情况下,这是不正确的。
4 个解决方案
#1
10
You can use set difference to determine what you are looking for. Numpy has a built-in function called numpy.setdiff1d(ar1, ar2):
您可以使用设置差异来确定您要查找的内容。Numpy有一个内置的函数叫Numpy。setdiff1d(ar1 ar2):
Return the sorted, unique values in ar1 that are not in ar2.
返回ar1中没有ar2的排序的唯一值。
Example for your case:
你的案子的示例:
>>> a = np.array([123, 412, 444])
>>> b = np.array([123, 321])
>>> diff = np.setdiff1d(b, a)
>>> print diff
array([321])
>>> if diff.size:
>>> print "Not passed"
So for your case, you would do a set difference you would subtract a from b and obtain an array with elements in b which are not in a. Then you can check if that was empty or not. As you can see, the output is 312
, which is an entry present in a
but not in b
; the length of it is now larger then zero, therefore there were elements in b
which were not present in a
.
对于这种情况,你要做一个集合差你要从b中减去a得到一个包含b中不包含a的元素的数组,然后你可以检查它是否为空。如你所见,输出是312,这是a中的一个元素,但不是b中的;它的长度现在大于0,因此b中有一些元素没有出现在a中。
#2
12
You could alway use a set:
你可以一直使用一个集合:
>>> a = numpy.array([123, 412, 444])
>>> b = numpy.array([123, 321])
>>> set(b) in set(a)
False
Or with newer versions of numpy:
或者更新版本的numpy:
>>> numpy.in1d(b,a)
array([ True, False], dtype=bool)
If you want just 'the answer' rather than an array:
如果你只想要“答案”而不是数组:
>>> numpy.in1d(b,a).all()
False
Or (least desirable):
(或者至少可取的):
>>> numpy.array([x in a for x in b])
array([ True, False], dtype=bool)
Looping is slowish on numpy arrays and should be avoided.
循环在numpy数组上是懒散的,应该避免。
#3
2
that means you want to check if each element of b is contained in a. in1d
does that:
这意味着你要检查b的每个元素是否都包含在a中,in1d会这样做:
from numpy import array, in1d
a = array([123, 412, 444])
b = array([123, 321])
print in1d(b, a).all()
#4
-1
you could do:
你能做的:
a = an_array
b = another_array
for i in b:
if i not in a:
return False
return True
#1
10
You can use set difference to determine what you are looking for. Numpy has a built-in function called numpy.setdiff1d(ar1, ar2):
您可以使用设置差异来确定您要查找的内容。Numpy有一个内置的函数叫Numpy。setdiff1d(ar1 ar2):
Return the sorted, unique values in ar1 that are not in ar2.
返回ar1中没有ar2的排序的唯一值。
Example for your case:
你的案子的示例:
>>> a = np.array([123, 412, 444])
>>> b = np.array([123, 321])
>>> diff = np.setdiff1d(b, a)
>>> print diff
array([321])
>>> if diff.size:
>>> print "Not passed"
So for your case, you would do a set difference you would subtract a from b and obtain an array with elements in b which are not in a. Then you can check if that was empty or not. As you can see, the output is 312
, which is an entry present in a
but not in b
; the length of it is now larger then zero, therefore there were elements in b
which were not present in a
.
对于这种情况,你要做一个集合差你要从b中减去a得到一个包含b中不包含a的元素的数组,然后你可以检查它是否为空。如你所见,输出是312,这是a中的一个元素,但不是b中的;它的长度现在大于0,因此b中有一些元素没有出现在a中。
#2
12
You could alway use a set:
你可以一直使用一个集合:
>>> a = numpy.array([123, 412, 444])
>>> b = numpy.array([123, 321])
>>> set(b) in set(a)
False
Or with newer versions of numpy:
或者更新版本的numpy:
>>> numpy.in1d(b,a)
array([ True, False], dtype=bool)
If you want just 'the answer' rather than an array:
如果你只想要“答案”而不是数组:
>>> numpy.in1d(b,a).all()
False
Or (least desirable):
(或者至少可取的):
>>> numpy.array([x in a for x in b])
array([ True, False], dtype=bool)
Looping is slowish on numpy arrays and should be avoided.
循环在numpy数组上是懒散的,应该避免。
#3
2
that means you want to check if each element of b is contained in a. in1d
does that:
这意味着你要检查b的每个元素是否都包含在a中,in1d会这样做:
from numpy import array, in1d
a = array([123, 412, 444])
b = array([123, 321])
print in1d(b, a).all()
#4
-1
you could do:
你能做的:
a = an_array
b = another_array
for i in b:
if i not in a:
return False
return True