hadoop中MapReduce中压缩的使用及4种压缩格式的特征的比较

时间:2022-09-14 18:16:52

在比较四中压缩方法之前,先来点干的,说一下在MapReduce的job中怎么使用压缩。

MapReduce的压缩分为map端输出内容的压缩和reduce端输出的压缩,配置很简单,只要在作业的conf中配置即可

        //配置压缩
conf.setBoolean("mapred.out.compress", true);//配置map输出的压缩
conf.setBoolean("mapred.output.compress", true); //配置reduce输出的压缩
conf.setClass("mapred.ouput.compression.codec", BZip2Codec.class, CompressionCodec.class); //配置压缩格式,我这里选用的是bzip2

1 gzip压缩

优点:压缩率比较高,而且压缩/解压速度也比较快;hadoop本身支持,在应用中处理gzip格式的文件就和直接处理文本一样;有hadoop native库;大部分linux系统都自带gzip命令,使用方便。

缺点:不支持split。

应用场景:当每个文件压缩之后在130M以内的(1个块大小内),都可以考虑用gzip压缩格式。譬如说一天或者一个小时的日志压缩成一个gzip 文件,运行mapreduce程序的时候通过多个gzip文件达到并发。hive程序,streaming程序,和java写的mapreduce程序完 全和文本处理一样,压缩之后原来的程序不需要做任何修改。

2 lzo压缩

优点:压缩/解压速度也比较快,合理的压缩率;支持split,是hadoop中最流行的压缩格式;支持hadoop native库;可以在linux系统下安装lzop命令,使用方便。

缺点:压缩率比gzip要低一些;hadoop本身不支持,需要安装;在应用中对lzo格式的文件需要做一些特殊处理(为了支持split需要建索引,还需要指定inputformat为lzo格式)。

应用场景:一个很大的文本文件,压缩之后还大于200M以上的可以考虑,而且单个文件越大,lzo优点越越明显。

3 snappy压缩

优点:高速压缩速度和合理的压缩率;支持hadoop native库。

缺点:不支持split;压缩率比gzip要低;hadoop本身不支持,需要安装;linux系统下没有对应的命令。

应用场景:当mapreduce作业的map输出的数据比较大的时候,作为map到reduce的中间数据的压缩格式;或者作为一个mapreduce作业的输出和另外一个mapreduce作业的输入。

4 bzip2压缩

优点:支持split;具有很高的压缩率,比gzip压缩率都高;hadoop本身支持,但不支持native;在linux系统下自带bzip2命令,使用方便。

缺点:压缩/解压速度慢;不支持native。

应用场景:适合对速度要求不高,但需要较高的压缩率的时候,可以作为mapreduce作业的输出格式;或者输出之后的数据比较大,处理之后的数据 需要压缩存档减少磁盘空间并且以后数据用得比较少的情况;或者对单个很大的文本文件想压缩减少存储空间,同时又需要支持split,而且兼容之前的应用程 序(即应用程序不需要修改)的情况。

最后用一个表格比较上述4种压缩格式的特征(优缺点):

4种压缩格式的特征的比较

压缩格式 split native 压缩率 速度 是否hadoop自带 linux命令 换成压缩格式后,原来的应用程序是否要修改
gzip 很高 比较快 是,直接使用 和文本处理一样,不需要修改
lzo 比较高 很快 否,需要安装 需要建索引,还需要指定输入格式
snappy 比较高 很快 否,需要安装 没有 和文本处理一样,不需要修改
bzip2 最高 是,直接使用 和文本处理一样,不需要修改