不同于C++或Java的多线程,python中是使用多进程来解决多项任务并发以提高效率的问题,依靠的是充分使用多核CPU的资源。这里是介绍mulitiprocessing的官方文档:https://docs.python.org/2/library/multiprocessing.html
一、多进程并发效果演示
<span style="font-size:14px;">import multiprocessing运行结果:
import time
def worker_1(ts):
print "run worker_1"
time.sleep(ts)
print "end worker_1"
def worker_2(ts):
print "run worker_2"
time.sleep(ts)
print "end worker_2"
def worker_3(ts):
print "run worker_3"
time.sleep(ts)
print "end worker_3"
def worker_4(ts):
print 'run worker_4'
time.sleep(ts)
print 'end worker_4'
def worker_5(ts):
print 'run worker_5'
time.sleep(ts)
print 'end worker_5'
if __name__ == "__main__":
proc1 = multiprocessing.Process(target = worker_1, args = (1,))
proc2 = multiprocessing.Process(target = worker_2, args = (2,))
proc3 = multiprocessing.Process(target = worker_3, args = (3,))
proc4 = multiprocessing.Process(target = worker_4, args = (3,))
proc5 = multiprocessing.Process(target = worker_5, args = (3,))
proc1.start()
proc2.start()
proc3.start()
proc4.start()
proc5.start()
print("The number of CPU is:" + str(multiprocessing.cpu_count()))
for p in multiprocessing.active_children():
print("child p.name:" + p.name + "\tp.id" + str(p.pid))
print "main_process finished."</span>
分析:
通过上面的运行结果可以看到
(1)在主进程中start启动的5个进程彼此之间以及和主进程均存在并发关系,像上面worker_2在主进程的输出前输出,而且worker1、4、3、5分别无序输出‘run’就是并发最好的说明
(2)由于worker_1和worker_2分别sleep1秒和2秒,所以在主进程结束后依次结束,而worker_3、worker_4、worker_5都是sleep相同的3秒,最后它们三个进程无序输出(end4、end3、end5)更好的演示了并发效果
二、将进程写成class的范例
<span style="font-size:14px;">import multiprocessing运行结果:
import time
class CounterProcess(multiprocessing.Process):
def __init__(self, ts, arr):
multiprocessing.Process.__init__(self)
self.ts = ts
self.arr = arr
def run(self):
time.sleep(self.ts)
sum = 0
for i in self.arr:
sum += i
print 'sum = ' + str(sum)
c_time_cur_loc = time.localtime()
counter_timestamp = '%04d%02d%02d_%02d%02d%02d' % ( \
c_time_cur_loc.tm_year, \
c_time_cur_loc.tm_mon, \
c_time_cur_loc.tm_mday, \
c_time_cur_loc.tm_hour, \
c_time_cur_loc.tm_min, \
c_time_cur_loc.tm_sec \
)
print 'counter_process finished at ' + str(counter_timestamp)
if __name__ == '__main__':
arr = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
ts = 2
counter = CounterProcess(ts, arr)
counter.start()
for i in arr:
print 'arr.member = ' + str(i)
m_time_cur_loc = time.localtime()
main_timestamp = '%04d%02d%02d_%02d%02d%02d' % ( \
m_time_cur_loc.tm_year, \
m_time_cur_loc.tm_mon, \
m_time_cur_loc.tm_mday, \
m_time_cur_loc.tm_hour, \
m_time_cur_loc.tm_min, \
m_time_cur_loc.tm_sec \
)
print 'main_process finished at ' + str(main_timestamp)</span>
分析:
这个范例是在主进程中一次输出数组中的斐波那契数列,然后由一个进程counter去计算该数列的累加和。
其中在进程初始化的时候设置了让该进程sleep两秒,然后在输出的结果中我们也可以看到主进程首先结束,然后在两秒后counter进程完成累加和的运算并且结束(累加和应该不到1ms,直接可以忽略,所以两个进程结束的时间差恰好就是我们预设的2秒)
三、daemon和join
(1)daemon:daemon的作用是控制主线程与其他线程的关系,默认情况下daemon=False,也就是当主进程关闭后,在主进程中start出来的进程会继续正常运行,而如果手动设置daemon=True,那么在主进程结束后,从主进程中start的所有其他进程进程也会立刻随着主进程的结束而结束。
<span style="font-size:14px;">import multiprocessing运行结果:
import time
class CounterProcess(multiprocessing.Process):
def __init__(self, ts, arr):
multiprocessing.Process.__init__(self)
self.ts = ts
self.arr = arr
def run(self):
time.sleep(self.ts)
sum = 0
for i in self.arr:
sum += i
print 'sum = ' + str(sum)
c_time_cur_loc = time.localtime(time.time())
counter_timestamp = '%04d%02d%02d_%02d%02d%02d' % ( \
c_time_cur_loc.tm_year, \
c_time_cur_loc.tm_mon, \
c_time_cur_loc.tm_mday, \
c_time_cur_loc.tm_hour, \
c_time_cur_loc.tm_min, \
c_time_cur_loc.tm_sec \
)
print 'counter_process finished at ' + str(counter_timestamp)
if __name__ == '__main__':
arr = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
ts = 2
counter = CounterProcess(ts, arr)
counter.daemon = True
counter.start()
#counter.join()
for i in arr:
print 'arr.member = ' + str(i)
m_time_cur_loc = time.localtime(time.time())
main_timestamp = '%04d%02d%02d_%02d%02d%02d' % ( \
m_time_cur_loc.tm_year, \
m_time_cur_loc.tm_mon, \
m_time_cur_loc.tm_mday, \
m_time_cur_loc.tm_hour, \
m_time_cur_loc.tm_min, \
m_time_cur_loc.tm_sec \
)
print 'main_process finished at ' + str(main_timestamp)</span>
分析:
可以看到,设置了daemon=True后,并没有执行完正在sleep中的counter_process进程,而是随着main_process的结束而终止了。
(2)join:join的作用是阻塞当前进程,直到调用join的那个进程执行完它的运算,回到当前进程下继续执行当前进程。
<span style="font-size:14px;">import multiprocessing运行结果:
import time
class CounterProcess(multiprocessing.Process):
def __init__(self, ts, arr):
multiprocessing.Process.__init__(self)
self.ts = ts
self.arr = arr
def run(self):
time.sleep(self.ts)
sum = 0
for i in self.arr:
sum += i
print 'sum = ' + str(sum)
c_time_cur_loc = time.localtime(time.time())
counter_timestamp = '%04d%02d%02d_%02d%02d%02d' % ( \
c_time_cur_loc.tm_year, \
c_time_cur_loc.tm_mon, \
c_time_cur_loc.tm_mday, \
c_time_cur_loc.tm_hour, \
c_time_cur_loc.tm_min, \
c_time_cur_loc.tm_sec \
)
print 'counter_process finished at ' + str(counter_timestamp)
if __name__ == '__main__':
ms_time_cur_loc = time.localtime(time.time())
main_s_timestamp = '%04d%02d%02d_%02d%02d%02d' % ( \
ms_time_cur_loc.tm_year, \
ms_time_cur_loc.tm_mon, \
ms_time_cur_loc.tm_mday, \
ms_time_cur_loc.tm_hour, \
ms_time_cur_loc.tm_min, \
ms_time_cur_loc.tm_sec \
)
print 'main_process started at ' + str(main_s_timestamp)
arr = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
ts = 2
counter = CounterProcess(ts, arr)
counter.daemon = True
counter.start()
counter.join()
for i in arr:
print 'arr.member = ' + str(i)
me_time_cur_loc = time.localtime(time.time())
main_e_timestamp = '%04d%02d%02d_%02d%02d%02d' % ( \
me_time_cur_loc.tm_year, \
me_time_cur_loc.tm_mon, \
me_time_cur_loc.tm_mday, \
me_time_cur_loc.tm_hour, \
me_time_cur_loc.tm_min, \
me_time_cur_loc.tm_sec \
)
print 'main_process finished at ' + str(main_e_timestamp)</span>
分析:
在本次执行的时候加入了主进程开始执行的时间,然后可以发现当在主进程中join了counter_process之后,就阻塞了当前正在运行的主进程,花了两秒时间完成了counter_process的运算,然后才继续进行main_process的运算,直到结束。
四、Lock
既然是并发,一定就会有lock来控制多进程访问共用资源的情况,python中锁有两种状态:被锁(locked)和没有被锁(unlocked),拥有acquire( )和release( )两种方法,并且遵循以下的规则:
1、unlocked的锁 + acquire( ) = locked的锁
2、locked的锁 + acquire( ) = 调用acquire( )的进程将进入阻塞,直到其他进程调用release( )方法释放锁
3、unlocked的锁 + release( ) = 抛出RuntimeError异常
4、locked的锁 + release( ) = 将该锁的状态由locked转变成unlocked
感谢yoyzhou提供了一张很清晰的acquire( )和release( )的逻辑图,引用如下所示:
另外:锁(Lock)可以和"with"语句一起使用,锁可以作为上下文管理器(context manager)。
使用with的好处是:当程序执行到"with"语句的时候,acquire( )方法将被调用,当程序执行完"with"语句时,release( )方法将被调用。这样我们就不用显示的调用acqiure( )和release( )方法,而是由with语句根据上下文来管理锁的获取和释放。
<span style="font-size:14px;">import multiprocessing
file_strA = 'file_writerA is working'
file_strB = 'file_writerB is working'
def file_writerA(lock, file_path):
print 'file_writerA process started already.'
with lock:
fs = open(file_path, 'a+')
repeat_times = 1000000
print 'file_writerA start to write.'
while repeat_times >= 1:
fs.write(file_strA + '\n')
repeat_times -= 1
print 'file_writerA finished writing.'
fs.close()
def file_writerB(lock, file_path):
print 'file_writerB process started already.'
lock.acquire()
try:
fs = open(file_path, 'a+')
repeat_times = 1000000
print 'file_writerB start to write.'
while repeat_times >= 1:
fs.write(file_strB + '\n')
repeat_times -= 1
print 'file_writerB finished writing.'
fs.close()
finally:
lock.release()
if __name__ == "__main__":
mdr_lock = multiprocessing.Lock()
file_path = "E:\\file.txt"
proc_writerA = multiprocessing.Process(target=file_writerA, args=(mdr_lock, file_path))
proc_writerB = multiprocessing.Process(target=file_writerB, args=(mdr_lock, file_path))
proc_writerA.start()
proc_writerB.start()
print "main_process is finished."</span>
运行结果:
分析:
上面程序中分别使用手动acquire( )/release( )和with两种写法控制两个进程去写相同的文件。
通过上面的运行结果可以看到,当file_writerA process启动以后,锁住了文件,此时file_writerB process也启动了,但是由于A没有完成写文件,所以B被阻塞,当A完成了写操作以后,B才开始继续执行自己的写文件命令。
另外需要强调一点,指定相同target的不同进程仍然是不同进程,也会被acquire阻塞住的,如下面实验所示。
<span style="font-size:14px;">import multiprocessing运行结果:
import threading
file_strA = 'file_writerA is working'
file_strB = 'file_writerB is working'
def file_writerA(name, lock, file_path):
print 'file_writer process ' + name + ' started already.'
print 'inname = ' + multiprocessing.current_process().name
with lock:
fs = open(file_path, 'a+')
repeat_times = 1000000
print 'file_writer ' + name + ' start to write.'
while repeat_times >= 1:
fs.write(file_strA + '\n')
repeat_times -= 1
print 'file_writer ' + name + ' finished writing.'
fs.close()
def file_writerB(name, lock, file_path):
print 'file_writer process ' + name + ' started already.'
print 'inname = ' + multiprocessing.current_process().name
lock.acquire()
try:
fs = open(file_path, 'a+')
repeat_times = 1000000
print 'file_writer ' + name + ' start to write.'
while repeat_times >= 1:
fs.write(file_strB + '\n')
repeat_times -= 1
print 'file_writer ' + name + ' finished writing.'
fs.close()
finally:
lock.release()
if __name__ == "__main__":
mdr_lock = multiprocessing.Lock()
file_path = "E:\\file.txt"
proc_writerA1 = multiprocessing.Process(target=file_writerA, args=('A1', mdr_lock, file_path,))
proc_writerA2 = multiprocessing.Process(target=file_writerA, args=('A2', mdr_lock, file_path,))
proc_writerB = multiprocessing.Process(target=file_writerB, args=('B', mdr_lock, file_path,))
proc_writerA1.start()
proc_writerA2.start()
proc_writerB.start()
print 'main_process is finished.'
</span>
分析:
上面的实验可以看到,proc_writerA1和pro_writerA2都是指定targer=file_writerA,但是从运行结果上我们看到A2被阻塞到A1和B都执行完毕才开始执行自己的写操作。
五、RLock
RLock是可重入锁(reetrant lock),和Lock对比:
(1)相同之处:当某一个进程lock.acquire( )后,直到其释放前,其他所有acquire相同lock的进程将被阻塞(包括自身进程)。
(2)区别之处:是同一个进程能够不被阻塞的多次调用rlock.acquire( ),同样需要相等次数的release( )才能释放后,其他进程才可以结束acquire的阻塞。
参考文献:
http://www.cnblogs.com/kaituorensheng/p/4445418.html
http://www.cnblogs.com/lipijin/p/3709903.html
http://yoyzhou.github.io/blog/2013/02/28/python-threads-synchronization-locks/