《Linux4.0设备驱动开发详解》笔记--第十五章:Linux I2C核心、总线与设备驱动

时间:2021-08-13 17:57:46

15.1 Linux I2C体系结构

  • I2C核心
    • I2C核心提供了I2C总线驱动和设备驱动的注册、注销的方法,I2C通信(Algorithm)方法上层的与具体适配器无关代码以及探测设备、检测设备地址的上层代码等
  • I2C总线驱动
    • 是对I2C体系结构中适配器端的实现,适配器可由CPU控制,甚至可以直接集成在CPU内部
    • 总线驱动包含I2C适配器数据结构i2c_adapter、I2C适配器的Algorithm数据结构i2c_algorithm和控制I2C适配器产生通信信号的函数
  • I2C设备驱动
    • 它是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU通信
    • I2C驱动主要包含数据结构i2c_driver和i2c_client,需要根据的设备实现其中的成员函数
  • 所有的I2C设备都在sysfs文件系统中显示,存在/sys/bus/i2c目录下,以适配器地址和芯片地址的形式列出
  • /drivers/i2c/下的文件介绍
    • i2c-core.c:实现了I2C核心的功能以及/proc/bus/i2c*接口
    • i2c-dev.c:实现I2C适配器设备文件的功能,每一个适配器被分配一个设备
      • 设配器的主设备号位89,次设备号位:0-255
      • i2c_dev.c并不是根据具体的设备而设计的,只是提供了同用的read()、write()和ioctl()等接口,应用层可以通过这些接口访问挂接在适配器上的I2C设备的存储空间或寄存器,并控制I2C设备的工作方式
    • busses文件夹:包含一些I2C主机控制器驱动,如i2c_omap.c、i2c_s3c2440c.等
    • algos文件夹:实现了一些I2C总线适配器的通信方法
  • i2c_adapter、i2c_algorithm、i2c_driver和i2c_client数据结构的作用及其之间的关系
    • i2c_adapter与i2c_algorithm
      • i2c_adapter对应于物理上的一个适配器,而i2c_algorithm对应于一套通信方法
      • 一个i2c_adapter需要i2c_algorithm提供的通信函数来控制适配器产生特定的访问周期
      • i2c_algorithm中的关键函数master_xfer()用于产生I2C访问周期需要的信号,以i2c_msg(即I2C消息)为单位
    • i2c_driver与i2c_client
      • i2c_driver对应于一套驱动方法,struct i2c_device_id形式的id_table是该驱动所支持的I2C设备的ID表
      • i2c_client对应于真实的物理设备,每个I2C设备都需一个i2c_client来描述
      • 一个i2c_driver支持多个同类型的i2c_client
      • i2c_client的信息通常在BSP的板文件中通过i2c_board_info填充,包括设备的ID号、地址、中断号等信息
      • 在I2C总线驱动i2c_bus_type的match()函数i2c_device_match()中,会调用i2c_match_id()函数匹配在板文件中定义的ID和i2c_driver所支持的ID表
    • i2c_adapter与i2c_client
      • 其关系与I2C设备体系中适配器与设备的关系一致,即i2c_client依附于i2c_driver
      • 一个i2c_driver可以被多个i2c_client依附,i2c_driver中包含有依附它的i2c_client的链表

15.2 I2C核心

  • 增加、删除i2c_adapter
int i2c_add_adapter(struct i2c_adapter *adap);
int i2c_del_adapter(struct i2c_adapter *adap);
  • 增加、删除i2c_driver
int i2c_register_driver(struct module *owner, struct i2c_driver *driver);
int i2c_del_driver(struct i2c_driver *driver);
inline int i2c_add_driver(struct i2c_driver *driver);
  • i2c_client依附/脱离
int i2c_attach_client(struct i2c_client *client);
int i2c_detach_client(struct i2c_client *client);

当一个具体的client被侦测到并被关联的时候,设备和sysfs文件将被注册。相反地,在client被取消关联的时候,sysfs文件和设备也被注销
代码清单15.6 I2C核心client attach/detach函数

1  int i2c_attach_client(struct i2c_client *client)
2 {
3 ...
4 device_register(&client->dev);
5 device_create_file(&client->dev, &dev_attr_client_name);
6
7 return 0;
8 }
9
10 int i2c_detach_client(struct i2c_client *client)
11 {
12 ...
13 device_remove_file(&client->dev, &dev_attr_client_name);
14 device_unregister(&client->dev);
15 ...
16 }
  • I2C传输、发送和接收
int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num);
int i2c_master_send(struct i2c_client *client,const char *buf ,int count);
int i2c_master_recv(struct i2c_client *client, char *buf ,int count);

i2c_transfer ()函数用于进行I2C适配器和I2C设备之间的一组消息交互,i2c_master_send()函数和i2c_master_recv()函数内部会 调用i2c_transfer()函数分别完成一条写消息和一条读消
例如:

代码清单15.7 I2C核心i2c_master_send函数
1 int i2c_master_send(struct i2c_client *client,const char *buf ,int count)
2 {
3 int ret;
4 struct i2c_adapter *adap=client->adapter;
5 struct i2c_msg msg;
6 /*构造一个写消息*/
7 msg.addr = client->addr;
8 msg.flags = client->flags & I2C_M_TEN;
9 msg.len = count;
10 msg.buf = (char *)buf;
11 /*传输消息*/
12 ret = i2c_transfer(adap, &msg, 1);
13
14 return (ret == 1) ? count : ret;
15 }
代码清单15.8 I2C核心i 2c_master_recv函数
1 int i2c_master_recv(struct i2c_client *client, char *buf ,int count)
2 {
3 struct i2c_adapter *adap=client->adapter;
4 struct i2c_msg msg;
5 int ret;
6 /*构造一个读消息*/
7 msg.addr = client->addr;
8 msg.flags = client->flags & I2C_M_TEN;
9 msg.flags |= I2C_M_RD;
10 msg.len = count;
11 msg.buf = buf;
12 /*传输消息*/
13 ret = i2c_transfer(adap, &msg, 1);
14
15 /* 成功(1条消息被处理), 返回读的字节数 */
16 return (ret == 1) ? count : ret;
17 }

i2c_transfer()函数本身不具备驱动适配器物理硬件完成消息交互的能力,它只是寻找到i2c_adapter对应的i2c_algorithm,并使用i2c_algorithm的master_xfer()函数真正驱动硬件流程,如下例程:

I2C核心i 2c_transfer函数
1 int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num)
2 {
3 int ret;
4
5 if (adap->algo->master_xfer) {
6 down(&adap->bus_lock);
7 ret = adap->algo->master_xfer(adap,msgs,num); /* 消息传输 */
8 up(&adap->bus_lock);
9 return ret;
10 } else {
11 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
12 return -ENOSYS;
13 }
14 }

15.3 Linux I2C总线驱动

15.3.1 I2C适配器驱动加载与卸载

  • I2C总线驱动模块的加载函数要完成两个工作:
    • 初始化I2C适配器所使用的硬件资源,申请I/O地址、中断号等。
    • 通过i2c_add_adapter()添加i2c_adapter的数据结构,当然这个i2c_adapter数据结构的成员已经被xxx适配器的相应函数指针所初始化。
  • I2C总线驱动模块的卸载函数要完成的工作与加载函数的相反:
    • 释放I2C适配器所使用的硬件资源,释放I/O地址、中断号等。
    • 通过i2c_del_adapter()删除i2c_adapter的数据结构。
  • 代码清单给出了I2C适配器驱动模块加载和卸载函数的模板。
I2C总线驱动模块加载和卸载函数模板
1 static int __init i2c_adapter_xxx_init(void)
2 {
3 xxx_adpater_hw_init();
4 i2c_add_adapter(&xxx_adapter);
5 }
6
7 static void __exit i2c_adapter_xxx_exit(void)
8 {
9 xxx_adpater_hw_free();
10 i2c_del_adapter(&xxx_adapter);
11 }
 - 上述代码中xxx_adpater_hw_init()和xxx_adpater_hw_free()函数的实现都与具体的CPU和I2C设备硬件直接相关。

15.3.2 I2C总线通信方法

  • 我们需要为特定的I2C适配器实现其通信方法,主要实现i2c_algorithm的master_xfer()函数和functionality()函数。
    • functionality()函数用于返回algorithm所支持的通信协议,如I2C_FUNC_I2C、I2C_FUNC_10BIT_ADDR、SMBUS_READ_BYTE、I2C_FUNC_SMBUS_WRITE_BYTE等。
    • master_xfer()函数在I2C适配器上完成传递给它的i2c_msg数组中的每个I2C消息
  • 代码给出了xxx设备的master_xfer()函数模板。
I2C总线驱动master_xfer函数模板
1
static int i2c_adapter_xxx_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2
int num)
3
{
4
...
5
for (i = 0; i < num; i++)
6
{
7
i2c_adapter_xxx_start(); /*产生开始位*/
8
/*是读消息*/
9
if (msgs[i]->flags &I2C_M_RD)
10
{
11
i2c_adapter_xxx_setaddr((msg->addr << 1) | 1); /*发送从设备读地址*/
12
i2c_adapter_xxx_wait_ack(); /*获得从设备的ack*/
13
i2c_adapter_xxx_readbytes(msgs[i]->buf, msgs[i]->len); /*读取msgs[i]
14 ->len长的数据到msgs[i]->buf*/

15
}
16
else
17
/*是写消息*/
18
{
19
i2c_adapter_xxx_setaddr(msg->addr << 1); /*发送从设备写地址*/
20
i2c_adapter_xxx_wait_ack(); /*获得从设备的ack*/
21
i2c_adapter_xxx_writebytes(msgs[i]->buf, msgs[i]->len); /*读取msgs[i]
22 ->len长的数据到msgs[i]->buf*/

23
}
24
}
25
i2c_adapter_xxx_stop(); /*产生停止位*/
26
}
 - 上述代码实际上给出了一个master_xfer()函数处理I2C消息数组的流程,对于数组中的每个消息,判断消息类型,若为读消息,则赋从设备地址为    (msg->addr << 1) | 1,否则为msg->addr << 1。对每个消息产生1个开始位,紧接着传送从设备地址,然后开始数据的发送或接收,对最后的消息还需产生1个停止位。图15.3描述了整个master_xfer()完成的时序。
  • 多数I2C总线驱动会定义一个xxx_i2c结构体,作为i2c_adapter的algo_data(类似“私有数据”)
    • xxx_i2c结构体包含I2C消息数组指针、数组索引及I2C适配器algorithm访问控制用的自旋锁、等待队列等
    • master_xfer()函数完成消息数组中消息的处理也可通过对xxx_i2c结构体相关成员的访问来控制。
1  struct xxx_i2c 
2 {
3 spinlock_t lock;
4 wait_queue_head_t wait;
5 struct i2c_msg *msg;
6 unsigned int msg_num;
7 unsigned int msg_idx;
8 unsigned int msg_ptr;
9 ...
10 struct i2c_adapter adap;
11 };

15.4 linux I2C设备驱动

15.4.1 Linux I2C设备驱动模块加载与卸载

  • I2C设备驱动模块加载函数通用的方法是在I2C设备驱动模块加载函数中完成两件事:
    • 通过register_chrdev()函数将I2C设备注册为一个字符设备。
    • 通过I2C核心的i2c_add_driver()函数添加i2c_driver。
  • 在模块卸载函数中需要做相反的两件事:
    • 通过I2C核心的i2c_del_driver()函数删除i2c_driver。
    • 通过unregister_chrdev()函数注销字符设备。
1  static int __init yyy_init(void)
2 {
3 int res;
4 /*注册字符设备*/
5 res = register_chrdev(YYY_MAJOR, "yyy", &yyy_fops); //老内核接口
6 if (res)
7 goto out;
8 /*添加i2c_driver*/
9 res = i2c_add_driver(&yyy_driver);
10 if (res)
11 goto out_unreg_class;
12 return 0;
13
14 out_unreg_chrdev: unregister_chrdev(I2C_MAJOR, "i2c");
15 out: printk(KERN_ERR "%s: Driver Initialisation failed\n", __FILE__);
16 return res;
17 }
18
19 static void __exit yyy_exit(void)
20 {
21 i2c_del_driver(&i2cdev_driver);
22 unregister_chrdev(YYY_MAJOR, "yyy");
23 }

15.4.2 Linux I2C设备驱动的数据传输

  • I2C设备上的读写数据的时序且数据通常通过i2c_msg消息数组进行组织,最后通过i2c_transfer函数完成
1  static int yyy_cmd1(struct i2c_client *client, struct rtc_time *dt)
2 {
3 struct i2c_msg msg[2];
4 /*第一条消息是写消息*/
5 msg[0].addr = client->addr;
6 msg[0].flags = 0;
7 msg[0].len = 1;
8 msg[0].buf = &offs;
9 /*第二条消息是读消息*/
10 msg[1].addr = client->addr;
11 msg[1].flags = I2C_M_RD;
12 msg[1].len = sizeof(buf);
13 msg[1].buf = &buf[0];
14
15 i2c_transfer(client->adapter, msg, 2);
16 ...
17 }

15.4.3 Linux i2c-dev.c文件分析

  • i2c-dev.c文件可以被看作一个I2C设 备驱动,它实现的一个i2c_client是虚拟的、临时的,随着设备文件的打开而产生,并随设备文件的关闭而撤销,并没有被添加到i2c_adapter的clients链表中。

  • i2c-dev.c针对每个I2C适配器生成一个主设备为89的设备文件,实现了i2c_driver的成员函数以及文件操作接口

  • i2c-dev.c的主体是“i2c_driver成员函数 + 字符设备驱动”。

  • i2c-dev.c中提供i2cdev_read()、i2cdev_write()函数来对应用户空间要使用的read()和 write()文件操作接口,这两个函数分别调用I2C核心的i2c_master_recv()和i2c_master_send()函数来构造1条 I2C消息并引发适配器algorithm通信函数的调用,完成消息的传输

  • i2c-dev.c中i2cdev_read()和i2cdev_write()函数不具备太强的通用性,没有太大的实用价值,只能适用于非RepStart模式的情况。

  • 对于2条以上消息组成的读写,在用户空间需要组织i2c_msg消息数组并调用I2C_RDWR IOCTL命令。

  • 代码给出了i2cdev_ioctl()函数的框架,其中详细列出了I2C_RDWR命令的处理过程。

 i2c-dev.c中的i2cdev_ioctl函数
1 static int i2cdev_ioctl(struct inode *inode, struct file *file,
2 unsigned int cmd, unsigned long arg)
3 {
4 struct i2c_client *client = (struct i2c_client *)file->private_data;
5 ...
6 switch ( cmd ) {
7 case I2C_SLAVE:
8 case I2C_SLAVE_FORCE:
9 ... /*设置从设备地址*/
10 case I2C_TENBIT:
11 ...
12 case I2C_PEC:
13 ...
14 case I2C_FUNCS:
15 ...
16 case I2C_RDWR:
17 if (copy_from_user(&rdwr_arg,
18 (struct i2c_rdwr_ioctl_data __user *)arg,
19 sizeof(rdwr_arg)))
20 return -EFAULT;
21 /* 一次传入的消息太多 */
22 if (rdwr_arg.nmsgs > I2C_RDRW_IOCTL_MAX_MSGS)
23 return -EINVAL;
24 /*获得用户空间传入的消息数组
25 rdwr_pa = (struct i2c_msg *)
26 kmalloc(rdwr_arg.nmsgs * sizeof(struct i2c_msg),
27 GFP_KERNEL);
28 if (rdwr_pa == NULL) return -ENOMEM;
29 if (copy_from_user(rdwr_pa, rdwr_arg.msgs,
30 rdwr_arg.nmsgs * sizeof(struct i2c_msg))) {
31 kfree(rdwr_pa);
32 return -EFAULT;
33 }
34 data_ptrs = kmalloc(rdwr_arg.nmsgs * sizeof(u8 __user *), GFP_KERNEL);
35 if (data_ptrs == NULL) {
36 kfree(rdwr_pa);
37 return -ENOMEM;
38 }
39 res = 0;
40 for( i=0; i41 /* 限制消息的长度 */
42 if (rdwr_pa[i].len > 8192) {
43 res = -EINVAL;
44 break;
45 }
46 data_ptrs[i] = (u8 __user *)rdwr_pa[i].buf;
47 rdwr_pa[i].buf = kmalloc(rdwr_pa[i].len, GFP_KERNEL);
48 if(rdwr_pa[i].buf == NULL) {
49 res = -ENOMEM;
50 break;
51 }
52 if(copy_from_user(rdwr_pa[i].buf,
53 data_ptrs[i],
54 rdwr_pa[i].len)) {
55 ++i; /* Needs to be kfreed too */
56 res = -EFAULT;
57 break;
58 }
59 }
60 if (res < 0) {
61 int j;
62 for (j = 0; j < i; ++j)
63 kfree(rdwr_pa[j].buf);
64 kfree(data_ptrs);
65 kfree(rdwr_pa);
66 return res;
67 }
68 /*把这些消息交给通信方法去处理*/
69 res = i2c_transfer(client->adapter,
70 rdwr_pa,
71 rdwr_arg.nmsgs);
72 while(i-- > 0) { /*如果是读消息,把值拷贝到用户空间*/
73 if( res>=0 && (rdwr_pa[i].flags & I2C_M_RD)) {
74 if(copy_to_user(
75 data_ptrs[i],
76 rdwr_pa[i].buf,
77 rdwr_pa[i].len)) {
78 res = -EFAULT;
79 }
80 }
81 kfree(rdwr_pa[i].buf);
82 }
83 kfree(data_ptrs);
84 kfree(rdwr_pa);
85 return res;
86 case I2C_SMBUS:
87 ...
88 default:
89 return i2c_control(client,cmd,arg);
90 }
91 return 0;
92 }
 - 常用的IOCTL包括I2C_SLAVE(设置从设备地址)、I2C_RETRIES(没有收到设备ACK情况下的重试次数,缺省为1)、I2C_TIMEOU(超时)以及I2C_RDWR。
  • 下面两个代码分别演示了直接通过read()、write()接口和O_RDWR IOCTL读写I2C设备的例子。

代码清单15.23 直接通过read()/write()读写I2C设备
1 #include
2 #include
3 #include
4 #include
5 #include
6 #include
7 #include
8
9 #define I2C_RETRIES 0x0701
10 #define I2C_TIMEOUT 0x0702
11 #define I2C_SLAVE 0x0703
12
13 int main(int argc, char **argv)
14 {
15 unsigned int fd;
16 unsigned short mem_addr;
17 unsigned short size;
18 unsigned short idx;
19 #define BUFF_SIZE 32
20 char buf[BUFF_SIZE];
21 char cswap;
22 union
23 {
24 unsigned short addr;
25 char bytes[2];
26 } tmp;
27
28 if (argc < 3)
29 {
30 printf("Use:\n%s /dev/i2c-x mem_addr size\n", argv[0]);
31 return 0;
32 }
33 sscanf(argv[2], "%d", &mem_addr);
34 sscanf(argv[3], "%d", &size);
35
36 if (size > BUFF_SIZE)
37 size = BUFF_SIZE;
38
39 fd = open(argv[1], O_RDWR);
40
41 if (!fd)
42 {
43 printf("Error on opening the device file\n");
44 return 0;
45 }
46
47 ioctl(fd, I2C_SLAVE, 0x50); /* 设置eeprom地址 */
48 ioctl(fd, I2C_TIMEOUT, 1); /* 设置超时 */
49 ioctl(fd, I2C_RETRIES, 1); /* 设置重试次数 */
50
51 for (idx = 0; idx < size; ++idx, ++mem_addr)
52 {
53 tmp.addr = mem_addr;
54 cswap = tmp.bytes[0];
55 tmp.bytes[0] = tmp.bytes[1];
56 tmp.bytes[1] = cswap;
57 write(fd, &tmp.addr, 2);
58 read(fd, &buf[idx], 1);
59 }
60 buf[size] = 0;
61 close(fd);
62 printf("Read %d char: %s\n", size, buf);
63 return 0;
64 }
代码清单15.24 通过O_RDWR IOCTL读写I2C设备
1 #include
2 #include
3 #include
4 #include
5 #include
6 #include
7 #include
8 #include
9 #include
10 #include
11
12 #define MAX_I2C_MSG 2
13
14 #define I2C_RETRIES 0x0701
15 #define I2C_TIMEOUT 0x0702
16 #define I2C_RDWR 0x0707
17
18 struct i2c_msg
19 {
20 __u16 addr; /* 从地址 */
21 __u16 flags;
22 #define I2C_M_RD 0x01
23 __u8 *buf; /* 消息数据指针 */
24 };
25 struct i2c_rdwr_ioctl_data
26 {
27 struct i2c_msg *msgs; /* i2c_msg[]指针 */
28 int nmsgs; /* i2c_msg数量 */
29 };
30
31 int main(int argc, char **argv)
32 {
33 struct i2c_rdwr_ioctl_data work_queue;
34 unsigned int idx;
35 unsigned int fd;
36 unsigned short start_address;
37 int ret;
38
39 if (argc < 4)
40 {
41 printf("Usage:\n%s /dev/i2c-x start_addr\n", argv[0]);
42 return 0;
43 }
44
45 fd = open(argv[1], O_RDWR);
46
47 if (!fd)
48 {
49 printf("Error on opening the device file\n");
50 return 0;
51 }
52 sscanf(argv[2], "%x", &start_address);
53 work_queue.nmsgs = MAX_I2C_MSG; /* 消息数量 */
54
55 work_queue.msgs = (struct i2c_msg*)malloc(work_queue.nmsgs *sizeof(struct
56 i2c_msg));
57 if (!work_queue.msgs)
58 {
59 printf("Memory alloc error\n");
60 close(fd);
61 return 0;
62 }
63
64 for (idx = 0; idx < work_queue.nmsgs; ++idx)
65 {
66 (work_queue.msgs[idx]).len = 0;
67 (work_queue.msgs[idx]).addr = start_address + idx;
68 (work_queue.msgs[idx]).buf = NULL;
69 }
70
71 ioctl(fd, I2C_TIMEOUT, 2); /* 设置超时 */
72 ioctl(fd, I2C_RETRIES, 1); /* 设置重试次数 */
73
74 ret = ioctl(fd, I2C_RDWR, (unsigned long) &work_queue);
75
76 if (ret < 0)
77 {
78 printf("Error during I2C_RDWR ioctl with error code: %d\n", ret);
79 }
80
81 close(fd);
82 return ;
83 }