Search in Sorted Array,Search in Rotated Sorted Array,Search in Rotated Sorted ArrayII

时间:2021-03-05 17:52:01

一:Search in Sorted Array

二分查找,可有重复元素,返回target所在的位置,只需返回其中一个位置,代码中的查找范围为[low,high),左闭右开,否则容易照成死循环。

代码:

class Solution {
public:
int search(vector<int>& nums, int target) {
int numsSize = nums.size();
int low = ,high = numsSize;
while(low < high){
int mid = low + (high-low)/;
if(nums[mid]==target){
return mid;
}else if(nums[mid]<target){
low = mid+1;
}else if(nums[mid]>target){
high = mid;
}
}
return -;
}
};

二:Search in Rotated Sorted Array

Suppose a sorted array is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

数组中不存在重复元素

这时没法像通常的二分查找那样的直接定位target在中点元素的哪一端,需要进行讨论。如果target<A[mid],有两种可能,一种是mid在左边有序数组,另一种可能是mid在右侧的有序数组。mid在左边有序数组,那么target又有两种可能,可以在左边有序数组,也可在右边有序数组;如果mid在右侧有序数组,那么只有一种可能,只能在右侧数组。同理可以讨论target>A[mid]时的情况。而mid在左侧有序数组还是右侧有序数组可以通过A[mid]>A[low]?的关系确定。当然可以画图分析,红线部分表示mid可能的位置:

Search in Sorted Array,Search in Rotated Sorted Array,Search in Rotated Sorted ArrayII

代码:

class Solution {
public:
int search(vector<int>& nums, int target) {
int numsSize = nums.size();
int low = ,high = numsSize;
while(low < high){
int mid = low + (high-low)/;
if(nums[mid]==target){
return mid;
}else if(nums[mid]<target){
if(nums[mid]>nums[low]){//mid位于左边区域
low = mid+;
}else{//mid位于右边区域
if(target>nums[low]){
high = mid;
}else if(target == nums[low]){
return low;
}else{
low = mid+;
}
}
}else if(nums[mid]>target){
if(nums[mid]>nums[low]){//mid位于左边区域,target有两个可能的区域位置
if(target>nums[low]){
high = mid;
}else if(target == nums[low]){
return low;
}else{
low = mid+;
}
}else{//mid位于右边区域
high = mid;
}
}
}
return -;
}
};

三:Search in Rotated Sorted ArrayII

Follow up for "Search in Rotated Sorted Array":
What if duplicates are allowed?

Would this affect the run-time complexity? How and why?

Write a function to determine if a given target is in the array.

数组中如果有重复元素时,时间复杂度退化到o(n)。

如果有重复元素,当A[mid]>=A[low]时,我们无法确定mid在左边有序数组还是右边有序数组,可以画图理解,如下两幅图,红线部分表示mid的位置,两幅图中均有A[mid]>=A[low]

Search in Sorted Array,Search in Rotated Sorted Array,Search in Rotated Sorted ArrayII  Search in Sorted Array,Search in Rotated Sorted Array,Search in Rotated Sorted ArrayII

由于当target>A[mid]时,我们无法确定mid在哪个有序数组中,所以我们没法讨论了,此时,我们将low上升一个,high下降一个。

代码:

class Solution {
public:
bool search(vector<int>& nums, int target) {
int numsSize = nums.size();
int low = ,high = numsSize;
while(low < high){
int mid = low + (high-low)/;
if(nums[mid]==target){
return true;
}else if(nums[mid]<target){
if(nums[mid]>=nums[low]){//无法确定mid在左边区域还是在右边区域
if(target == nums[low] || target==nums[high-]){
return true;
}
low++;
high--;
}else{//mid位于右边区域
if(target>nums[low]){
high = mid;
}else if(target == nums[low]){
return true;
}else{
low = mid+;
}
}
}else if(nums[mid]>target){
if(nums[mid]>=nums[low]){//无法确定mid在左边区域还是在右边区域
if(target == nums[low] || target==nums[high-]){
return true;
}
low++;
high--;
}else{//mid位于右边区域
high = mid;
}
}
}
return false;
}
};