bzoj 1426:收集邮票 求平方的期望

时间:2021-03-11 17:46:50

  显然如果收集了k天,ans=k*(k+1)/2=(k^2+k)/2.那么现在要求的就是这个东西的期望。

  设f[i]表示已有i张邮票,收集到n张的期望次数,g[i]表示已有i张邮票,收集到n张的次数的平方的期望。

  显然i这个点有 $\frac{i}{n}$ 的概率走自环,有 $\frac{n-i}{n}$ 的概率走到i+1这个点。

  SO $$f[i]=(\frac{i}{n})\times(f[i]+1)+(\frac{n-i}{n})\times(f[i+1]+1)$$

  以前一直不懂平方的期望是怎么求的,今天终于证了一发。$$E((x+1)^2)=\sum_{i=0}^\infty P(i)*(i+1)^2$$

  因为P后边的那个式子是一个具体的值所以可以拆开。

  $$E((x+1)^2)=\sum_{i=0}^\infty P(i)*(i+1)^2=\sum_{i=0}^\infty P(i)*(i^2+2i+1)=\sum_{i=0}^\infty P(i)*(i^2)+2\times\sum_{i=0}^\infty P(i)*(i)+1=E[x^2]+2E[x]+1$$

  其中倒数第二步是根据期望的线性可加性得来。

  这样x^2的期望就可以由(x-1)^2的期望推来。

  所以g[i]和f[i]同理:设s[i]表示在从i点出发走了s[i]步后结束,g[i]=E(s[i]^2)。

  $$g[i]=(\frac{i}{n})\times E((s[i]+1)^2)+(\frac{n-i}{n})\times E((s[i+1]+1)^2)$$

  $$g[i]=(\frac{i}{n})\times(g[i]+2\times f[i]+1)+(\frac{n-i}{n})\times(g[i+1]+2*f[i+1]+1)$$

  最后化简一下递推就行了。

  

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define N 100005
using namespace std;
double f[N],g[N];
int main()
{
int n;
scanf("%d",&n);
f[n]=;g[n]=;
for(int i=n-;i>=;i--)
{
f[i]=f[i+]+(double)n/(n-i);
g[i]=g[i+]+2.0*f[i+]+2.0*i/(n-i)*f[i]+1.0*n/(n-i);
}
printf("%.2lf\n",(g[]+f[])/);
return ;
}