Hadoop中有一套Writable实现可以满足大部分需求,但是在有些情况下,我们需要根据自己的需要构造一个新的实现,有了定制的Writable,我们就可以完全控制二进制表示和排序顺序。
为了演示如何新建一个定制的writable类型,我们需要写一个表示一对字符串的实现:
blic class TextPair implements WritableComparable<TextPair> {
private Text first;
private Text second; public TextPair() {
set(new Text(), new Text());
} public TextPair(String first, String second) {
set(new Text(first), new Text(second));
} public TextPair(Text first, Text second) {
set(first, second);
} public void set(Text first, Text second) {
this.first = first;
this.second = second;
} public Text getFirst() {
return first;
} public Text getScond() {
return second;
} public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
} public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
} public int hashCode() {
return first.hashCode() * 163 + second.hashCode();
} public boolean equals(Object o) {
if(o instanceof TextPair) {
TextPair tp = (TextPair)o;
return first.equals(tp.first) && second.equals(tp.second);
}
return false;
} public String toString() {
return first + "\t" + second;
} public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if(cmp != 0) {
return cmp;
}
return second.compareTo(tp.second);
}
}
为速度实现一个RawComparator
还可以进一步的优化,当作为MapReduce里的key,需要进行比较时,因为他已经被序列化,想要比较他们,那么首先要先反序列化成一个对象,然后再调用compareTo对象进行比较,但是这样效率太低了,有没有可能可以直接比较序列化后的结果呢,答案是肯定的,可以。
RawComparator接口允许执行者比较流中读取的未被反序列化为对象的记录,从而省去了创建对象的所有的开销,其中,compare() 比较时需要的两个参数所对应的记录位于字节数组b1和b2指定开始位置s1和s2,记录长度为l1和l2,代码如下:
public interface RawComparator<T> extends Comparator<T> {
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2);
}
以IntWritable为例,它的RawComparator实现中,compare() 方法通过readInt()直接在字节数组中读入需要比较的两个整数,然后输出Comparable接口要求的比较结果。
值得注意的是,该过程中compare()方法避免使用IntWritable对象,从而避免了不必要的对象分配,相关代码如下:
/** A Comparator optimized for IntWritable. */
public static class Comparator extends WritableComparator {
public Comparator() {
super(IntWritable.class);
} public int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2) {
int thisValue = readInt(b1, s1);
int thatValue = readInt(b2, s2);
return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
}
}
Writablecomparator是RawComparator对WritableComparable类的一个通用实现,它提供两个主要功能:
1、提供了一个RawComparator的compare()默认实现,该实现从数据流中反序列化要进行比较的对象,然后调用对象的compare()方法进行比较
2、它充当了RawComparator实例的一个工厂方法。例如,可以通过下面的代码获得IntWritable的RawComparator:
RawComparator<IntWritable> comparator = WritableComparator.get(IntWritable.class);
我们只需要把EmploeeWritable的序列化后的结果拆成成员对象,然后比较成员对象即可:
class Comparator extends WritableComparator {
private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator();
public Comparator() {
super(TextPair.class);
}
public int compara(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
try {
int firstL1 = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(b1, s1);
int firstL2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2);
int cmp = TEXT_COMPARATOR.compare(b1, s1, firstL1, b2, s2, firstL2);
if(cmp != 0) {
return cmp;
}
return TEXT_COMPARATOR.compare(b1, s1 + firstL1, l1 - firstL1, b2, s2 + firstL2, l2 - firstL2);
} catch(IOException e) {
throw new IllegalArgumentException(e);
}
}
}
定制comparators
有时候,除了默认的comparator,你可能还需要一些自定义的comparator来生成不同的排序队列,看一下下面这个示例:
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
try {
int firstL1 = WritableUtils.decodeVIntSize(b1[s1])+ readVInt(b1, s1);
int firstL2 = WritableUtils.decodeVIntSize(b2[s2])+ readVInt(b2, s2);
return TEXT_COMPARATOR.compare(b1, s1, firstL1, b2, s2, firstL2);
} catch (IOException e) {
throw new IllegalArgumentException(e);
}
} public int compare(WritableComparable a, WritableComparable b) {
if(a instanceof Textpair && b instanceof TextPair) {
return ((TextPair) a).first.compareTo(((TextPair) b).first);
}
return super.compare(a, b);
}