Gym - 101775A Chat Group 组合数+逆元+快速幂

时间:2021-01-26 17:19:33

It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: since every 3 or more persons could make a chat group, there can be 42 different chat groups.

Given N persons in a dormitory, and every K or more persons could make a chat group, how many different chat groups could there be?

Input

The input starts with one line containing exactly one integer T which is the number of test cases.

Each test case contains one line with two integers N and K indicating the number of persons in a dormitory and the minimum number of persons that could make a chat group.

  • 1 ≤ T ≤ 100.
  • 1 ≤ N ≤ 109.
  • 3 ≤ K ≤ 105.

Output

For each test case, output one line containing "Case #x: y" where x is the test case number (starting from 1) and y is the number of different chat groups modulo 1000000007.

Example

Input
1
6 3
Output
Case #1: 42

题解:

看起来很简单的题   我还是做了很久 基础知识点有很多漏洞吧

本题就是一个 C(n,k)+C(n,k+1)+...+C(n,n) 的过程

如果暴力算的话会超时  哭叽叽

要知道组合数的总和是2^n

所以转化成 2^n - C(n,0)+C(n,1)+...+C(n,k-1)

加减乘可直接用同余定理直接拆开算  除法不行

所以利用费马小定理(假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p),即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。)

得到推论  a*a(p-2)≡1(mod p)对于整数a,p,a关于p的逆元就是a^(p-2),直接快速幂解之即可,但注意这个定理要求a,p互质

利用上述方法求得逆元

计算乘方时用到快速幂

如此这一问题便解决了

(我的第一篇博客,欢迎大家批评指正^-^)

#include <iostream>
#include <stdio.h> using namespace std;
typedef long long ll;
const int N=1e5+;
const ll mod=1e9+; ll quick(ll a,ll b) //快速幂
{
ll ans=;
a%=mod;
while(b){
if(b&) ans=ans*a%mod;
a=a*a%mod;
b>>=;
}
return ans;
} int main()
{
ll n,k,i;
int l=,t;
scanf("%d",&t);
while(t--){
scanf("%I64d%I64d",&n,&k);
ll ans=quick(,n)-; //2^n-C(n,0)
ll cur=n;
for(i=;i<k;i++){
ans=(ans+mod-cur)%mod; //emmm 为啥要加个mod我还不太了解,如果有大佬知道,麻烦指点一下
cur=cur*(n-i)%mod;
cur=cur*quick(i+,mod-)%mod; //乘以逆元
}
printf("Case #%d: %I64d\n",l++,ans);
}
return ;
}