给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R)。求ALL 至 ARR 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值是多少?Input第1行:2个数N, Q中间用空格分隔,分别表示数组的长度及查询的数量(1 <= N <= 50000, 1 <= Q <= 50000)。
第2 - N+1行:每行1个数,对应数组A的元素(0 <= Aii <= 10^9)。
第N+2 - N+Q+1行:每行3个数X, L, R,中间用空格分隔。(0 <= X <= 10^9,0 <= L <= R < N)Output输出共Q行,对应数组A的区间L,RL,R中的数与X进行异或运算,所能得到的最大值。Sample Input
15 8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
10 5 9
1023 6 6
33 4 7
182 4 9
181 0 12
5 9 14
99 7 8
33 9 13
Sample Output
13
1016
41
191
191
15
107
47
懒得说了。反正主席树写习惯了,持久化Trie也就直接写了。
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int a[maxn],rt[maxn],cnt;
struct node{
int l,r,val;
node(){ l=r=val=; }
node(int L,int R,int V):l(L),r(R),val(V){}
}s[maxn*];
void add(int &now,int pre,int x,int pos)
{
now=++cnt;
s[now]=node(s[pre].l,s[pre].r,s[pre].val+);
if(pos==-) return ;
if(((x>>pos)%)==) add(s[now].l,s[pre].l,x,pos-);
else add(s[now].r,s[pre].r,x,pos-);
}
int query(int now,int pre,int x)
{
int res=;
for(int i=;i>=;i--){
int t=(x>>i)%;
if(t==){
if(s[now].r&&s[s[now].r].val-s[s[pre].r].val>) now=s[now].r, pre=s[pre].r, res+=(<<i);
else now=s[now].l, pre=s[pre].l;
}
if(t==){
if(s[now].l&&s[s[now].l].val-s[s[pre].l].val>) now=s[now].l, pre=s[pre].l, res+=(<<i);
else now=s[now].r, pre=s[pre].r;
}
}
return res;
}
int main()
{
int N,Q,L,R,x,i;
scanf("%d%d",&N,&Q);
for(i=;i<=N;i++){
scanf("%d",&a[i]);
add(rt[i],rt[i-],a[i],);
}
for(i=;i<=Q;i++){
scanf("%d%d%d",&x,&L,&R);
int ans=query(rt[R+],rt[L],x);
printf("%d\n",ans);
}
return ;
}