Let f(x)
be the number of zeroes at the end of x!
. (Recall that x! = 1 * 2 * 3 * ... * x
, and by convention, 0! = 1
.)
For example, f(3) = 0
because 3! = 6 has no zeroes at the end, while f(11) = 2
because 11! = 39916800 has 2 zeroes at the end. Given K
, find how many non-negative integers x
have the property that f(x) = K
.
Example 1: Input: K = 0 Output: 5 Explanation: 0!, 1!, 2!, 3!, and 4! end with K = 0 zeroes. Example 2: Input: K = 5 Output: 0 Explanation: There is no x such that x! ends in K = 5 zeroes.
Note:
-
K
will be an integer in the range[0, 10^9]
.
或许都知道N!0的个数是怎么算的,但倒过来呢,但打表发现...答案就0和5两种可能
我猜是因为规律是除以5造成的吧...
然后我们二分一下K...
class Solution { public: int numOfZero(int n){ int num = 0, i; for(i=5; i<=n; i*=5) { num += n/i; } return num; } map<int,int>Mp; int preimageSizeFZF(int K){ int l=K,r=K*10+1; while(l<r){ int mid=l+(r-l)/2; if(numOfZero(mid)==K){ return 5; }else if(numOfZero(mid)<K){ l=mid+1; }else{ r=mid; } } return 0; } };