题目链接:
题解:
矩阵快速幂优化DP。
先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶性相异的贡献,很容易把刚才的方程变成$nm$的轮换式方程,即$f_{(0/1,j)}$表示偶/奇数列第$j$行的方案数。此时转移方程为$$f_{(i,j)}=f_{(i,j)}+\sum_{x=-1}^{1}f_{(i(xor)1,j+x)}$$
然后考虑如何用矩阵优化,画图发现十字相乘时,如果我们把奇偶分成两列会没办法转移,然后考虑十字相乘性质,我们可以把奇偶两列转换为一列上的两段,这样我们构建$(2n)^2$的矩阵,至于递推矩阵,YY一下即可。
代码:
#define Troy 10/24/2017 #include <bits/stdc++.h> using namespace std; inline int read(){
int s=,k=;char ch=getchar();
while(ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while(ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
} const int mod=; int n,m; struct Matrix{
int a[][];
Matrix(){memset(a,,sizeof(a));}
inline void e1(){
for(int i=;i<=*n;i++)
a[i][i]=;
}
inline friend Matrix operator *(Matrix x,Matrix y){
Matrix z;
for(int i=;i<=*n;i++)
for(int j=;j<=*n;j++)
for(int k=;k<=*n;k++)
z.a[i][j]=(z.a[i][j]+x.a[i][k]*1ll*y.a[k][j])%mod;
return z;
}
inline friend Matrix operator ^(Matrix a,long long b){
Matrix ret;ret.e1();
while(b){
if(b&) ret=ret*a;
a=a*a;b>>=;
}return ret;
}
}; int main(){
n=read(),m=read();
if(m==){
puts(n==?"":"");
return ;
}
Matrix ans;
ans.a[+n][]=;
if(n>)
ans.a[+n][]=;
Matrix t;
for(int i=;i<=n;i++){
t.a[i][i+n]=;
t.a[i+n][i]=;
t.a[i+n][i+n]=;
if(i-)
t.a[i+n][i+n-]=;
if(i+<=n)
t.a[i+n][i+n+]=;
}
ans=(t^(m-))*ans;
printf("%d",ans.a[*n][]);
}