机器学习入门:线性回归及梯度下降对原理做了详细的说明
本文主要记录实现时的代码
1.实验数据
采用随机的方式,生成(X,Y)数据对
k=10;
x=zeros(k,1);
y=zeros(k,1);
for i=1:k
x(i,1)=30+i*5;
y(i,1)=(8+rand)*x(i,1);
end
plot(x,y,'.r');
2.theta0,theta1,J函数
当theta0=0时
x=[1 2 3];
y=[1 2 3];
k=5;
c1=zeros(1,k);
Jf=zeros(1,k);
for i=1:k
c1(1,i)=(i-1)*0.5;
end
for i=1:k
for j=1:3
Jf(1,i)=Jf(1,i)+(c1(1,i)*x(1,j)-y(1,j))^2;
end
Jf(1,i)=Jf(1,i)/6;
end
plot(c1,Jf);
function value=Jfunction(c0,c1,x,y)
k=size(x,1);
value=0;
for j=1:k
value=value+(c1*x(1,j)+c0-y(1,j))^2;
end
value=value/(2*k);
当theta0不恒为0时
clear;
clc;
x=[1 2 3];
y=[1 2 3];
c0=linspace(-10, 10, 100);
c1=linspace(-1, 4, 100);
Jf=zeros(length(c0),length(c1));
for i=1:length(c0)
for j=1:length(c1)
Jf(i,j)=Jfunction(c0(1,i),c1(1,j),x,y);
end
end
surf(c0,c1,Jf);
contour(c0,c1,Jf,logspace(-2, 3, 20));
3.梯度下降法和随机梯度下降法
clear;
clc;
close all;
k=10;
% a=0.000001;
a=0.001;
x=zeros(k,1);
y=zeros(k,1);
for i=1:k
x(i,1)=30+i*5;
y(i,1)=(8+rand)*x(i,1);
end
plot(x,y,'.r');
[c0,c1,count]=CalGradient(x,y,a);
[c2,c3,count2]=Gradient_descent_rand(x,y,a);
x=35:5:80;
y1=c1*x+c0;
y2=c3*x+c2;
hold on
plot(x,y1);
plot(x,y2,'r');
count
c0
c1
count2
c2
c3
function [theta0,theta1,count]=CalGradient(X,Y,a); theta0=0; theta1=0; t0=0; t1=0; count=0;while(1) for i=1:size(X,2) t0=t0+(theta0+theta1*X(i,1)-Y(i,1))*1; t1=t1+(theta0+theta1*X(i,1)-Y(i,1))*X(i,1); end old_theta0=theta0; old_theta1=theta1; theta0=theta0-a*t0; theta1=theta1-a*t1; t0=0; t1=0; if(sqrt((old_theta0-theta0)^2+(old_theta1-theta1)^2)<0.000001) break; end count=count+1;end
function [theta0,theta1,count]=Gradient_descent_rand(X,Y,a); theta0=0; theta1=0; count=0; flag=true; while(flag) for i=1:size(X,2) old_theta0=theta0; old_theta1=theta1; theta0=theta0-a*(theta0+theta1*X(i,1)-Y(i,1))*1; theta1=theta1-a*(theta0+theta1*X(i,1)-Y(i,1))*X(i,1); count=count+1; if(sqrt((old_theta0-theta0)^2+(old_theta1-theta1)^2)<0.000001) flag=false; break; end end enda:学习率,太小的话,收敛较慢,太大可能无法收敛 count =
12
c0 =
0.2371
c1 =
8.2969
count2 =
12
c2 =
0.2373
c3 =
8.2969