MapReduce是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(归纳)”,及他们的主要思想,都是从函数式编程语言借来的,还有从矢量编程语言借来的特性。[1]
当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归纳)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
映射和化简
简单来说,一个映射函数就是对一些独立元素组成的概念上的列表(例如,一个测试成绩的列表)的每一个元素进行指定的操作(比如,有人发现所有学生的成绩都被高估了一分,他可以定义一个“减一”的映射函数,用来修正这个错误。)。事实上,每个元素都是被独立操作的,而原始列表没有被更改,因为这里创建了一个新的列表来保存新的答案。这就是说,Map操作是可以高度并行的,这对高性能要求的应用以及并行计算领域的需求非常有用。
而归纳操作指的是对一个列表的元素进行适当的合并(继续看前面的例子,如果有人想知道班级的平均分该怎么做?他可以定义一个归纳函数,通过让列表中的奇数(odd)或偶数(even)元素跟自己的相邻的元素相加的方式把列表减半,如此递归运算直到列表只剩下一个元素,然后用这个元素除以人数,就得到了平均分)。虽然他不如映射函数那么并行,但是因为归纳总是有一个简单的答案,大规模的运算相对独立,所以归纳函数在高度并行环境下也很有用。
分布和可靠性
MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。如果一个节点保持沉默超过一个预设的时间间隔,主节点(类同Google档案系统中的主服务器)记录下这个节点状态为死亡,并把分配给这个节点的数据发到别的节点。每个操作使用命名文件的不可分割操作以确保不会发生并行线程间的冲突;当文件被改名的时候,系统可能会把他们复制到任务名以外的另一个名字上去。(避免副作用)。
归纳操作工作方式很类似,但是由于归纳操作在并行能力较差,主节点会尽量把归纳操作调度在一个节点上,或者离需要操作的数据尽可能近的节点上了;这个特性可以满足Google的需求,因为他们有足够的带宽,他们的内部网络没有那么多的机器。
>>>>>>>>>>>>>>>>>>>>>>>>>>再附录一篇讲解>>>>>>>>>>>>>>>>>>>>
昨天,我在Xebia印度办公室发表了一个关于MapReduce的演说。演说进行得很顺利,听众们都能够理解MapReduce的概念(根据他们的反馈)。我成功地向技术听众们(主要是Java程序员,一些Flex程序员和少数的测试人员)解释了MapReduce的概念,这让我感到兴奋。在所有辛勤的工作之后,我们在Xebia印度办公室享用了丰盛的晚餐,然后我径直回了家。
回家后,我的妻子(Supriya)问道:“你的会开得怎么样?”我说还不错。 接着她又问我会议是的内容是什么(她不是从事软件或编程领域的工作的)。我告诉她说MapReduce。“Mapduce,那是什么玩意儿?”她问道: “跟地形图有关吗?”我说不,不是的,它和地形图一点关系也没有。“那么,它到底是什么玩意儿?”妻子问道。 “唔…让我们去Dominos(披萨连锁)吧,我会在餐桌上跟你好好解释。” 妻子说:“好的。” 然后我们就去了披萨店。
我们在Domions点餐之后,柜台的小伙子告诉我们说披萨需要15分钟才能准备好。于是,我问妻子:“你真的想要弄懂什么是MapReduce?” 她很坚定的回答说“是的”。 因此我问道:
我: 你是如何准备洋葱辣椒酱的?(以下并非准确食谱,请勿在家尝试)
妻子: 我会取一个洋葱,把它切碎,然后拌入盐和水,最后放进混合研磨机里研磨。这样就能得到洋葱辣椒酱了。
妻子: 但这和MapReduce有什么关系?
我: 你等一下。让我来编一个完整的情节,这样你肯定可以在15分钟内弄懂MapReduce.
妻子: 好吧。
我:现在,假设你想用薄荷、洋葱、番茄、辣椒、大蒜弄一瓶混合辣椒酱。你会怎么做呢?
妻子: 我会取薄荷叶一撮,洋葱一个,番茄一个,辣椒一根,大蒜一根,切碎后加入适量的盐和水,再放入混合研磨机里研磨,这样你就可以得到一瓶混合辣椒酱了。
我: 没错,让我们把MapReduce的概念应用到食谱上。Map和Reduce其实是两种操作,我来给你详细讲解下。
Map(映射): 把洋葱、番茄、辣椒和大蒜切碎,是各自作用在这些物体上的一个Map操作。所以你给Map一个洋葱,Map就会把洋葱切碎。 同样的,你把辣椒,大蒜和番茄一一地拿给Map,你也会得到各种碎块。 所以,当你在切像洋葱这样的蔬菜时,你执行就是一个Map操作。 Map操作适用于每一种蔬菜,它会相应地生产出一种或多种碎块,在我们的例子中生产的是蔬菜块。在Map操作中可能会出现有个洋葱坏掉了的情况,你只要把坏洋葱丢了就行了。所以,如果出现坏洋葱了,Map操作就会过滤掉坏洋葱而不会生产出任何的坏洋葱块。
Reduce(化简):在这一阶段,你将各种蔬菜碎都放入研磨机里进行研磨,你就可以得到一瓶辣椒酱了。这意味要制成一瓶辣椒酱,你得研磨所有的原料。因此,研磨机通常将map操作的蔬菜碎聚集在了一起。
妻子: 所以,这就是MapReduce?
我: 你可以说是,也可以说不是。 其实这只是MapReduce的一部分,MapReduce的强大在于分布式计算。
妻子: 分布式计算? 那是什么?请给我解释下吧。
我: 没问题。
我: 假设你参加了一个辣椒酱比赛并且你的食谱赢得了最佳辣椒酱奖。得奖之后,辣椒酱食谱大受欢迎,于是你想要开始出售自制品牌的辣椒酱。假设你每天需要生产10000瓶辣椒酱,你会怎么办呢?
妻子: 我会找一个能为我大量提供原料的供应商。
我:是的..就是那样的。那你能否独自完成制作呢?也就是说,独自将原料都切碎? 仅仅一部研磨机又是否能满足需要?而且现在,我们还需要供应不同种类的辣椒酱,像洋葱辣椒酱、青椒辣椒酱、番茄辣椒酱等等。
妻子: 当然不能了,我会雇佣更多的工人来切蔬菜。我还需要更多的研磨机,这样我就可以更快地生产辣椒酱了。
我:没错,所以现在你就不得不分配工作了,你将需要几个人一起切蔬菜。每个人都要处理满满一袋的蔬菜,而每一个人都相当于在执行一个简单的Map操作。每一个人都将不断的从袋子里拿出蔬菜来,并且每次只对一种蔬菜进行处理,也就是将它们切碎,直到袋子空了为止。
这样,当所有的工人都切完以后,工作台(每个人工作的地方)上就有了洋葱块、番茄块、和蒜蓉等等。
妻子:但是我怎么会制造出不同种类的番茄酱呢?
我:现在你会看到MapReduce遗漏的阶段—搅拌阶段。MapReduce将所有输出的蔬菜碎都搅拌在了一起,这些蔬菜碎都是在以key为基础的 map操作下产生的。搅拌将自动完成,你可以假设key是一种原料的名字,就像洋葱一样。 所以全部的洋葱keys都会搅拌在一起,并转移到研磨洋葱的研磨器里。这样,你就能得到洋葱辣椒酱了。同样地,所有的番茄也会被转移到标记着番茄的研磨器里,并制造出番茄辣椒酱。
披萨终于做好了,她点点头说她已经弄懂什么是MapReduce了。我只希望下次她听到MapReduce时,能更好的理解我到底在做些什么。
编注:下面这段话是网上其他人用最简短的语言解释MapReduce:
We want to count all the books in the library. You count up shelf #1, I count up shelf #2. That’s map. The more people we get, the faster it goes.
我们要数图书馆中的所有书。你数1号书架,我数2号书架。这就是“Map”。我们人越多,数书就更快。
Now we get together and add our individual counts. That’s reduce.
现在我们到一起,把所有人的统计数加在一起。这就是“Reduce”。