预处理出每一个数字能够向后延伸多少,然后尝试将两段拼起来。
1 second
256 megabytes
standard input
standard output
DZY has a sequence a, consisting of n integers.
We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a
subsegment of the sequence a. The value (j - i + 1) denotes
the length of the subsegment.
Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from
the subsegment to make the subsegment strictly increasing.
You only need to output the length of the subsegment you find.
The first line contains integer n (1 ≤ n ≤ 105).
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
In a single line print the answer to the problem — the maximum length of the required subsegment.
6
7 2 3 1 5 6
5
You can choose subsegment a2, a3, a4, a5, a6 and
change its 3rd element (that is a4)
to 4.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; int n,a[110000],dp[110000]; int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",a+i);
int nx=-1;
for(int i=0;i<n;i++)
{
if(nx>i)
{
dp[i]=nx-i;
continue;
}
int j=i;
while(j+1<n&&a[j]<a[j+1]) j++;
dp[i]=j-i+1;
nx=max(nx,j+1);
}
int ans=dp[0];
for(int i=0;i<n;i++)
{
int p=dp[i]+i-1;
if(p-1>=0&&p+1<n&&a[p+1]>a[p-1]+1)
{
ans=max(ans,dp[i]-1+dp[p+1]+1);
}
if(p+2<n&&a[p+2]>a[p]+1)
{
ans=max(ans,dp[i]+dp[p+2]+1);
}
if(p+1<n||i-1>=0) ans=max(ans,dp[i]+1);
i=p;
}
printf("%d\n",ans);
return 0;
}