由于最近的面试老是遇到面试官问设计一个秒杀系统,当时也只是粗略的看了看,然后今天去陌陌面试又被问到了,被教育了一顿,然后晚上的笔试又让设计一个秒杀系统,我真是XXXXK,所以搜罗一波关于秒杀系统的文章,做一下记录。
6 作弊的手段:进攻与防守
秒杀和抢购收到了“海量”的请求,实际上里面的水分是很大的。不少用户,为了“抢“到商品,会使用“刷票工具”等类型的辅助工具,帮助他们发送尽可能多的请求到服务器。还有一部分高级用户,制作强大的自动请求脚本。这种做法的理由也很简单,就是在参与秒杀和抢购的请求中,自己的请求数目占比越多,成功的概率越高。
这些都是属于“作弊的手段”,不过,有“进攻”就有“防守”,这是一场没有硝烟的战斗哈。
6.1 同一个账号,一次性发出多个请求
部分用户通过浏览器的插件或者其他工具,在秒杀开始的时间里,以自己的账号,一次发送上百甚至更多的请求。实际上,这样的用户破坏了秒杀和抢购的公平性。
这种请求在某些没有做数据安全处理的系统里,也可能造成另外一种破坏,导致某些判断条件被绕过。例如一个简单的领取逻辑,先判断用户是否有参与记录,如果没有则领取成功,最后写入到参与记录中。这是个非常简单的逻辑,但是,在高并发的场景下,存在深深的漏洞。多个并发请求通过负载均衡服务器,分配到内网的多台Web服务器,它们首先向存储发送查询请求,然后,在某个请求成功写入参与记录的时间差内,其他的请求获查询到的结果都是“没有参与记录”。这里,就存在逻辑判断被绕过的风险。
Paste_Image.png
应对方案:
在程序入口处,一个账号只允许接受1个请求,其他请求过滤。不仅解决了同一个账号,发送N个请求的问题,还保证了后续的逻辑流程的安全。实现方案,可以通过Redis这种内存缓存服务,写入一个标志位(只允许1个请求写成功,结合watch的乐观锁的特性),成功写入的则可以继续参加。
Paste_Image.png
或者,自己实现一个服务,将同一个账号的请求放入一个队列中,处理完一个,再处理下一个。
6.2 多个账号,一次性发送多个请求【检测频率,加验证码】
很多公司的账号注册功能,在发展早期几乎是没有限制的,很容易就可以注册很多个账号。因此,也导致了出现了一些特殊的工作室,通过编写自动注册脚本,积累了一大批“僵尸账号”,数量庞大,几万甚至几十万的账号不等,专门做各种刷的行为(这就是微博中的“僵尸粉“的来源)。举个例子,例如微博中有转发抽奖的活动,如果我们使用几万个“僵尸号”去混进去转发,这样就可以大大提升我们中奖的概率。
这种账号,使用在秒杀和抢购里,也是同一个道理。例如,iPhone官网的抢购,火车票黄牛党。
Paste_Image.png
应对方案:
这种场景,可以通过检测指定机器IP请求频率就可以解决,如果发现某个IP请求频率很高,可以给它弹出一个验证码或者直接禁止它的请求:
弹出验证码,最核心的追求,就是分辨出真实用户。因此,大家可能经常发现,网站弹出的验证码,有些是“鬼神乱舞”的样子,有时让我们根本无法看清。他们这样做的原因,其实也是为了让验证码的图片不被轻易识别,因为强大的“自动脚本”可以通过图片识别里面的字符,然后让脚本自动填写验证码。实际上,有一些非常创新的验证码,效果会比较好,例如给你一个简单问题让你回答,或者让你完成某些简单操作(例如百度贴吧的验证码)。
直接禁止IP,实际上是有些粗暴的,因为有些真实用户的网络场景恰好是同一出口IP的,可能会有“误伤“。但是这一个做法简单高效,根据实际场景使用可以获得很好的效果。
6.3 多个账号,不同IP发送不同请求
所谓道高一尺,魔高一丈。有进攻,就会有防守,永不休止。这些“工作室”,发现你对单机IP请求频率有控制之后,他们也针对这种场景,想出了他们的“新进攻方案”,就是不断改变IP。
Paste_Image.png
有同学会好奇,这些随机IP服务怎么来的。有一些是某些机构自己占据一批独立IP,然后做成一个随机代理IP的服务,有偿提供给这些“工作室”使用。还有一些更为黑暗一点的,就是通过木马黑掉普通用户的电脑,这个木马也不破坏用户电脑的正常运作,只做一件事情,就是转发IP包,普通用户的电脑被变成了IP代理出口。通过这种做法,黑客就拿到了大量的独立IP,然后搭建为随机IP服务,就是为了挣钱。
应对方案:
说实话,这种场景下的请求,和真实用户的行为,已经基本相同了,想做分辨很困难。再做进一步的限制很容易“误伤“真实用户,这个时候,通常只能通过设置业务门槛高来限制这种请求了,或者通过账号行为的”数据挖掘“来提前清理掉它们。
僵尸账号也还是有一些共同特征的,例如账号很可能属于同一个号码段甚至是连号的,活跃度不高,等级低,资料不全等等。根据这些特点,适当设置参与门槛,例如限制参与秒杀的账号等级。通过这些业务手段,也是可以过滤掉一些僵尸号。
7 高并发下的数据安全
我们知道在多线程写入同一个文件的时候,会存现“线程安全”的问题(多个线程同时运行同一段代码,如果每次运行结果和单线程运行的结果是一样的,结果和预期相同,就是线程安全的)。如果是MySQL数据库,可以使用它自带的锁机制很好的解决问题,但是,在大规模并发的场景中,是不推荐使用MySQL的。秒杀和抢购的场景中,还有另外一个问题,就是“超发”,如果在这方面控制不慎,会产生发送过多的情况。我们也曾经听说过,某些电商搞抢购活动,买家成功拍下后,商家却不承认订单有效,拒绝发货。这里的问题,也许并不一定是商家奸诈,而是系统技术层面存在超发风险导致的。
7.1 超发的原因
假设某个抢购场景中,我们一共只有100个商品,在最后一刻,我们已经消耗了99个商品,仅剩最后一个。这个时候,系统发来多个并发请求,这批请求读取到的商品余量都是99个,然后都通过了这一个余量判断,最终导致超发。
Paste_Image.png
在上面的这个图中,就导致了并发用户B也“抢购成功”,多让一个人获得了商品。这种场景,在高并发的情况下非常容易出现。
7.2 悲观锁思路
解决线程安全的思路很多,可以从“悲观锁”的方向开始讨论。
悲观锁,也就是在修改数据的时候,采用锁定状态,排斥外部请求的修改。遇到加锁的状态,就必须等待。
Paste_Image.png
虽然上述的方案的确解决了线程安全的问题,但是,别忘记,我们的场景是“高并发”。也就是说,会很多这样的修改请求,每个请求都需要等待“锁”,某些线程可能永远都没有机会抢到这个“锁”,这种请求就会死在那里。同时,这种请求会很多,瞬间增大系统的平均响应时间,结果是可用连接数被耗尽,系统陷入异常。
7.3 FIFO队列思路
那好,那么我们稍微修改一下上面的场景,我们直接将请求放入队列中的,采用FIFO(First Input First Output,先进先出),这样的话,我们就不会导致某些请求永远获取不到锁。看到这里,是不是有点强行将多线程变成单线程的感觉哈。
Paste_Image.png
然后,我们现在解决了锁的问题,全部请求采用“先进先出”的队列方式来处理。那么新的问题来了,高并发的场景下,因为请求很多,很可能一瞬间将队列内存“撑爆”,然后系统又陷入到了异常状态。或者设计一个极大的内存队列,也是一种方案,但是,系统处理完一个队列内请求的速度根本无法和疯狂涌入队列中的数目相比。也就是说,队列内的请求会越积累越多,最终Web系统平均响应时候还是会大幅下降,系统还是陷入异常。
7.4 乐观锁思路
这个时候,我们就可以讨论一下“乐观锁”的思路了。乐观锁,是相对于“悲观锁”采用更为宽松的加锁机制,大都是采用带版本号(Version)更新。实现就是,这个数据所有请求都有资格去修改,但会获得一个该数据的版本号,只有版本号符合的才能更新成功,其他的返回抢购失败。这样的话,我们就不需要考虑队列的问题,不过,它会增大CPU的计算开销。但是,综合来说,这是一个比较好的解决方案。
Paste_Image.png
有很多软件和服务都“乐观锁”功能的支持,例如Redis中的watch就是其中之一。通过这个实现,我们保证了数据的安全。
8 总结
互联网正在高速发展,使用互联网服务的用户越多,高并发的场景也变得越来越多。电商秒杀和抢购,是两个比较典型的互联网高并发场景。虽然我们解决问题的具体技术方案可能千差万别,但是遇到的挑战却是相似的,因此解决问题的思路也异曲同工。
sad
乐观锁、