UVA 11754 - Code Feat(数论)

时间:2021-04-05 16:01:14

UVA 11754 - Code Feat

题目链接

题意:给定一个c个x, y1,y2,y3..yk形式,前s小的答案满足s % x在集合y1, y2, y3 ... yk中

思路:LRJ大白例题,分两种情况讨论

1、全部x之积较小时候,暴力枚举每一个集合选哪个y。然后中国剩余定理求解

2、全部x之积较大时候,选定一个k/x尽可能小的序列,枚举x * t + y (t = 1, 2, 3...)去暴力求解。

代码:

#include <stdio.h>
#include <string.h>
#include <vector>
#include <set>
#include <algorithm>
using namespace std; const int N = 15;
const int M = 105; int c, s, x[N], k[N], y[N][M], now;
set<int> value[N];
vector<long long> ans;
long long a[N]; void solve_enum() {
for (int i = 0; i < c; i++) {
if (c == now) continue;
value[i].clear();
for (int j = 0; j < k[i]; j++)
value[i].insert(y[i][j]);
}
for (int t = 0; ; t++) {
for (int i = 0; i < k[now]; i++) {
long long n = (long long)x[now] * t + y[now][i];
if (n == 0) continue;
bool ok = true;
for (int i = 0; i < c; i++) {
if (i == now) continue;
if (!value[i].count(n % x[i])) {ok = false; break;}
}
if (ok) {printf("%lld\n", n); if (--s == 0) return;}
}
}
} long long exgcd(long long a, long long b, long long &x, long long &y) {
if (!b) {x = 1; y = 0; return a;}
long long d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
} long long china() {
long long M = 1, ans = 0;
for (int i = 0; i < c; i++)
M *= x[i];
for (int i = 0; i < c; i++) {
long long w = M / x[i];
long long xx, yy;
exgcd(x[i], w, xx, yy);
ans = (ans + w * yy * a[i]) % M;
}
return (ans + M) % M;
} void dfs(int d) {
if (d == c) {
ans.push_back(china());
return;
}
for (int i = 0; i < k[d]; i++) {
a[d] = y[d][i];
dfs(d + 1);
}
} void solve_china() {
ans.clear();
dfs(0);
sort(ans.begin(), ans.end());
long long M = 1;
for (int i = 0; i < c; i++) M *= x[i];
for (int i = 0; ; i++) {
for (int j = 0; j < ans.size(); j++) {
long long n = M * i + ans[j];
if (n > 0) {printf("%lld\n", n); if (--s == 0) return;}
}
}
} int main() {
while (~scanf("%d%d", &c, &s) && s || c) {
now = 0;
long long sum = 1;
for (int i = 0; i < c; i++) {
scanf("%d%d", &x[i], &k[i]);
sum *= k[i];
if (k[i] * x[now] < k[now] * x[i])
now = i;
for (int j = 0; j < k[i]; j++)
scanf("%d", &y[i][j]);
sort(y[i], y[i] + k[i]);
}
if (sum > 10000) solve_enum();
else solve_china();
printf("\n");
}
return 0;
}