<背景>
滤镜处理是图像处理中一种非常常见的方法。比如photoshop中的滤镜效果,除了自带的滤镜,还扩展了很多第三方的滤镜效果插件,可以对图像做丰富多样的变换;很多手机app实现了实时滤镜功能,最有名的当属Instagram。
PIL中主要涉及到卷积滤镜,其原理是针对数字图像的像素矩阵,使用一个nxn的方形矩阵做滤波器(即卷积核kernel,常见的如3x3,5x5等),对该图像像素进行卷积遍历(即截取和卷积核同等大小的像素矩阵进行卷积运算),每一个输出像素都是一定区域像素按一定权重组合计算出的结果(像素不独立,受到邻近像素的影响,邻近像素区域可以调整,选取范围越大,计算量越大,图像处理时间越长),遍历后的图像就是输出图像。如果算法经过优化,遍历的速度足够快,那就是实时滤镜(live filter),可以实时预览图像过滤后的效果。
ImageFilter是Python PIL的滤镜模块,当前版本支持10种加强滤镜,通过这些预定义的滤镜,可以方便的对图片进行一些过滤操作,从而去掉图片中的噪音(部分的消除),这样可以降低图像处理算法的复杂度(如模式识别等),更方便的实现和预览一些算法的效果。
本文脚本包含以下全部滤镜, 实现了10种图像处理滤镜的效果预览和JPEG文件保存。
ImageFilter.BLUR |
模糊滤镜 |
ImageFilter.CONTOUR | 轮廓 |
ImageFilter.DETAIL | 细节滤镜 |
ImageFilter.EDGE_ENHANCE | 边界加强 |
ImageFilter.EDGE_ENHANCE_MORE | 边界加强(阀值更 大) |
ImageFilter.EMBOSS | 浮雕滤镜 |
ImageFilter.FIND_EDGES | 边界滤镜 |
ImageFilter.SMOOTH | 平滑滤镜 |
ImageFilter.SMOOTH_MORE | 平滑滤镜(阀值更大) |
ImageFilter.SHARPEN | 锐化滤镜 |
<效果>
原图:
模糊滤镜:
锐度增强滤镜:
细节滤镜:
轮廓滤镜:
边界提取滤镜:
边界增强滤镜:
边界增强滤镜-加强版:
平滑滤镜:
平滑滤镜-加强版:
浮雕滤镜:
<源码分析>
PIL库的滤镜算法可以在Python\Lib\site-packages\PIL路径下找到,如下所示:
在PIL路径下,我们看到了三个同名但后缀不同的文件:ImageFilter.py ,ImageFilter.pyc ,ImageFilter.pyo 。
.py文件:存放的是脚本源代码;
.pyc文件 :是同名的.py编译后的字节码文件,用来供解释器解释执行;
.pyo文件 :是同名的.pyc文件经过优化后的字节码文件,通常体积更小,运行更快。
滤镜算法在ImageFilter.py文件中。
如前文所述,每一个滤镜通常对应着一个滤波器(即kernel),PIL中的kernel均为常见的3x3和5x5方形矩阵,下面是PIL中9种滤镜对应的矩阵:
模糊滤镜:
class BLUR(BuiltinFilter): name = "Blur" filterargs = (5, 5), 16, 0, ( 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1 )
轮廓滤镜:
class CONTOUR(BuiltinFilter): name = "Contour" filterargs = (3, 3), 1, 255, ( -1, -1, -1, -1, 8, -1, -1, -1, -1 )
细节滤镜:
class DETAIL(BuiltinFilter): name = "Detail" filterargs = (3, 3), 6, 0, ( 0, -1, 0, -1, 10, -1, 0, -1, 0 )
边缘增强滤镜:
class EDGE_ENHANCE(BuiltinFilter): name = "Edge-enhance" filterargs = (3, 3), 2, 0, ( -1, -1, -1, -1, 10, -1, -1, -1, -1 )
边缘增强滤镜-增强版:
该增强版和原滤镜仅仅是矩阵2行2列的一个参数大小不同,实际是修改了中心像素的权重。这个数值可以任意修改以自定义边缘增强的幅度。
class EDGE_ENHANCE_MORE(BuiltinFilter): name = "Edge-enhance More" filterargs = (3, 3), 1, 0, ( -1, -1, -1, -1, 9, -1, -1, -1, -1 )
浮雕滤镜
class EMBOSS(BuiltinFilter): name = "Emboss" filterargs = (3, 3), 1, 128, ( -1, 0, 0, 0, 1, 0, 0, 0, 0 )
边缘提取滤镜:
class FIND_EDGES(BuiltinFilter): name = "Find Edges" filterargs = (3, 3), 1, 0, ( -1, -1, -1, -1, 8, -1, -1, -1, -1 )
平滑滤镜:
class SMOOTH(BuiltinFilter): name = "Smooth" filterargs = (3, 3), 13, 0, ( 1, 1, 1, 1, 5, 1, 1, 1, 1 )
平滑滤镜-加强版:
平滑滤镜的加强是增加了滤镜窗口的尺寸,有3x3扩展到5x5, 这样每一个新像素的产生会包含25个周围原始像素的加权贡献(离得越近,贡献越大),这样的结果会更加平滑自然,代价是处理速度会明显的变慢。
class SMOOTH_MORE(BuiltinFilter): name = "Smooth More" filterargs = (5, 5), 100, 0, ( 1, 1, 1, 1, 1, 1, 5, 5, 5, 1, 1, 5, 44, 5, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 1 )
锐化滤镜:
class SHARPEN(BuiltinFilter): name = "Sharpen" filterargs = (3, 3), 16, 0, ( -2, -2, -2, -2, 32, -2, -2, -2, -2 )
此外,这些滤镜不仅可以独立使用,还可以*组合,比如边缘提取+平滑滤镜,可以得到更加干净的边缘提取图像等等,此处不一一列举。
左图为原始边界提取图,右侧为平滑后的边界图。
<脚本源码>
#start
# -*- coding: cp936 -*-
import Image,ImageDraw
import ImageFilter,random,sys
img = Image.open("1.jpg") ##图像处理##
#转换为RGB图像
img = img.convert("RGB") #经过PIL自带filter处理
imgfilted_b = img.filter(ImageFilter.BLUR)
imgfilted_c = img.filter(ImageFilter.CONTOUR)
imgfilted_ee = img.filter(ImageFilter.EDGE_ENHANCE)
imgfilted_ee_m = img.filter(ImageFilter.EDGE_ENHANCE_MORE)
imgfilted_em = img.filter(ImageFilter.EMBOSS)
imgfilted_fe = img.filter(ImageFilter.FIND_EDGES)
imgfilted_sm = img.filter(ImageFilter.SMOOTH)
imgfilted_sm_m = img.filter(ImageFilter.SMOOTH_MORE)
imgfilted_sh = img.filter(ImageFilter.SHARPEN)
imgfilted_d = img.filter(ImageFilter.DETAIL) ##组合使用filter
group_imgfilted = img.filter(ImageFilter.CONTOUR)
group_imgfilted = group_imgfilted.filter(ImageFilter.SMOOTH_MORE) ##图像保存##
imgfilted_b.save("1b.jpg")
imgfilted_c.save("1c.jpg")
imgfilted_ee.save("1ee.jpg")
imgfilted_ee_m.save("1eem.jpg")
imgfilted_em.save("1em.jpg")
imgfilted_fe.save("1fe.jpg")
imgfilted_sm.save("1sm.jpg")
imgfilted_sm_m.save("1smm.jpg")
imgfilted_sh.save("1sh.jpg")
imgfilted_d.save("1d.jpg")
group_imgfilted.save("1group.jpg") ##图像显示##
imgfilted_b.show()
imgfilted_c.show()
imgfilted_ee.show()
imgfilted_ee_m.show()
imgfilted_em.show()
imgfilted_fe.show()
imgfilted_sm.show()
imgfilted_sm_m.show()
imgfilted_sh.show()
imgfilted_d.show()
group_imgfilted.show()
#end