向量空间(Vector Spaces)
向量空间又称线性空间,是线性代数的中心内容和基本概念之一。在解析几何里引入向量的概念后,是许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。譬如,实系多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函数
Example: R2(均为二维实向量) eg:
向量空间(Vector Spaces)
向量空间又称线性空间,是线性代数的中心内容和基本概念之一。在解析几何里引入向量的概念后,是许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。譬如,实系多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函数
Example: R2(均为二维实向量) eg: