Description
给定N个点以及每个点的权值,要你处理接下来的M个操作。
操作有4种。操作从0到3编号。点从1到N编号。
0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。
保证x到y是联通的。
1:后接两个整数(x,y),代表连接x到y,若x到Y已经联通则无需连接。
2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。
3:后接两个整数(x,y),代表将点X上的权值变成Y。
Input
第1行两个整数,分别为N和M,代表点数和操作数。
第2行到第N+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。
第N+2行到第N+M+1行,每行三个整数,分别代表操作类型和操作所需的量。
1<=N,M<=300000
Output
对于每一个0号操作,你须输出X到Y的路径上点权的Xor和。
Sample Input
3 3
1
2
3
1 1 2
0 1 2
0 1 1
1
2
3
1 1 2
0 1 2
0 1 1
Sample Output
3
1
1
还是LCT模板题(话说我怎么天天做板子题)
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (300000+100)
using namespace std;
int Father[N],Son[N][],Rev[N],Val[N],Xor[N];
int n,m; void Update(int x){Xor[x]=Val[x]^Xor[Son[x][]]^Xor[Son[x][]];}
int Get(int x) {return Son[Father[x]][]==x;}
int Is_root(int x) {return Son[Father[x]][]!=x && Son[Father[x]][]!=x;} void Rotate(int x)
{
int wh=Get(x);
int fa=Father[x],fafa=Father[fa];
if (!Is_root(fa)) Son[fafa][Son[fafa][]==fa]=x;
Father[fa]=x;
Son[fa][wh]=Son[x][wh^];
if (Son[fa][wh]) Father[Son[fa][wh]]=fa;
Father[x]=fafa;
Son[x][wh^]=fa;
Update(fa);
Update(x);
} void Pushdown(int x)
{
if (Rev[x] && x)
{
if (Son[x][]) Rev[Son[x][]]^=;
if (Son[x][]) Rev[Son[x][]]^=;
swap(Son[x][],Son[x][]);
Rev[x]=;
}
} int Push(int x)
{
if (!Is_root(x)) Push(Father[x]);
Pushdown(x);
} void Splay(int x)
{
Push(x);
for (int fa; !Is_root(x); Rotate(x))
if (!Is_root(fa=Father[x]))
Rotate(Get(fa)==Get(x)?fa:x);
} void Access(int x) {for (int y=;x;y=x,x=Father[x]) Splay(x),Son[x][]=y,Update(x);}
int Find_root(int x) {Access(x); Splay(x); while (Son[x][]) x=Son[x][]; return x;}
void Make_root(int x) {Access(x); Splay(x); Rev[x]^=;}
void Link(int x,int y) {Make_root(x); Father[x]=y;}
void Cut(int x,int y) {Make_root(x); Access(y); Splay(y); Son[y][]=Father[x]=;}
void Query(int x,int y){Make_root(x);Access(y); Splay(y); printf("%d\n",Xor[y]);} int main()
{
int opt,x,y;
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
scanf("%d",&Val[i]),Xor[i]=Val[i];
for (int i=; i<=m; ++i)
{
scanf("%d%d%d",&opt,&x,&y);
if (opt==) Query(x,y);
if (opt== && Find_root(x)!=Find_root(y)) Link(x,y);
if (opt== && Find_root(x)==Find_root(y)) Cut(x,y);
if (opt==) Access(x),Splay(x),Val[x]=y,Update(x);
}
}