HDU1003 简单DP

时间:2022-03-13 16:04:03

Max Sum

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
#include <bits/stdc++.h>
using namespace std;
const int MAXN = + ;
int T, n;
int arr[MAXN], dp[MAXN];
int S, E;
int main() {
scanf("%d", &T);
for(int t = ; t < T; ++t) {
S = E = ;
cin >> n;
for(int i = ; i != n; ++i)
cin >> arr[i];
dp[] = arr[];
for(int i = ; i != n; ++i)
if(dp[i-] >= )
dp[i] = dp[i-] + arr[i];
else
dp[i] = arr[i];
int Max = dp[];
for(int i = ; i != n; ++i)
if(dp[i] >= Max) {
Max = dp[i];
E = i;
}
int sum = ;
for(int i = E; i >= ; --i) {
sum += arr[i];
if(sum == Max)
S = i;
}
cout << "Case " << t+ << ":" << endl;
cout << Max << " " << S+ << " " << E+ << endl;
if(t < T-) puts("");
}
return ;
}

用了数组

#include <bits/stdc++.h>
using namespace std; int main() {
int T,n;
int Max, S, E, sum, a;
cin >> T;
for(int t = ; t <= T; ++t) {
cin >> n;
S = E = sum = ;
Max = -;
int k = ;
for(int i = ; i != n; ++i) {
cin >> a;
sum += a;
if(sum > Max) {
Max = sum;
S = k;
E = i;
}
if(sum < ) {
sum = ;
k = i + ;
}
}
cout << "Case " << t << ":" << endl;
cout << Max << " " << S+ << " " << E+ << endl;
if(t < T) puts("");
}
return ;
}

不用数组