参考资料 https://oi.men.ci/fft-notes/
单位根(此类群均可)
\(ω^0, ω^1, \dots, ω^{n-1}互不相同\)
\(ω^k_n=ω^{2k}_{2n}\)
\(ω^{k+n/2}_n = ω^{-k}_n\)
\(ω_n^n=ω_n^0=1\)
DFT
\[
A =(a_0, a_1,\cdots, a_{n-1})\\
A(x)=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1}\\
A' = DFT(A) = (A(ω_n^0), \cdots, A(ω_n^{n-1}))\\
A'是A的DFT.
\]
\[
\begin{align*} A_0(x) &= a_0 + a_2 x + a_4 x ^ 2 + \dots + a_{n - 2} x ^ {\frac{n}{2} - 1} \\ A_1(x) &= a_1 + a_3 x + a_5 x ^ 2 + \dots + a_{n - 1} x ^ {\frac{n}{2} - 1} \end{align*} \\
.\\
有A(ω_n^k) = A_0(ω^k_{n/2})+ω_n^kA_1(ω^k_{n/2}), k\in [0, n/2)
\\A(ω_n^k) = A_0(ω^k_{n/2})-ω_n^kA_1(ω^k_{n/2}), k\in [n/2, n)
\]
IDFT
\[
A =(a_0, a_1,\cdots, a_{n-1})\\
A(x)=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1}\\
A' = IDFT(A) = (A(ω_n^0)/n,A(\omega_n^{-1})/n, \cdots, A(ω_n^{-(n-1)})/n)\\
A'是A的IDFT.
\]
蝶形变换
(00, 01, 10, 11)
先按奇偶性分类
(00, 10), (01, 11)
不考虑末位之后,开始最初奇偶性分类过程
(0,1),(0,1)
所以反转二进制位,按反转后顺序操作。