JAG Kingdom is a strange kingdom such that its N cities are connected only by one-way roads. The N cities are numbered 1 through N. ICPC (International Characteristic Product Corporation) transports its products from the factory at the city S to the storehouse
at the city T in JAG Kingdom every day. For efficiency, ICPC uses multiple trucks at once. Each truck starts from S and reaches T on the one-way road network, passing through some cities (or directly). In order to reduce risks of traffic jams and accidents,
no pair of trucks takes the same road.
Now, ICPC wants to improve the efficiency of daily transports, while ICPC operates daily transports by as many trucks as possible under the above constraint. JAG Kingdom, whose finances are massively affected by ICPC, considers to change the direction of one-way
roads in order to increase the number of trucks for daily transports of ICPC. Because reversal of many roads causes confusion, JAG Kingdom decides to reverse at most a single road.
If there is no road such that reversal of the road can improve the transport efficiency, JAG Kingdom need not reverse any roads. Check whether reversal of a single road can improve the current maximum number of trucks for daily transports. And if so, calculate
the maximum number of trucks which take disjoint sets of roads when a one-way road can be reversed, and the number of roads which can be chosen as the road to be reversed to realize the maximum.
|
JAG Practice Contest for ACM-ICPC Asia Regional 2014
题意:给一个有向图,n个点,m条边,起点S ,终点T。现有非常多个机器人要从S走到T,每条边仅仅能走一个机器人,现要能够改一条边的方向,问最多有多少个机器人能够从S走到T。而且有多少种改法。(假设没有改变边的方向,则改法为0。)
解题:如要没有加条件:能够改一条边。那么这题就是找最多有多少条路要以从起点S走到T。建图:每条有向边的边权为1,用最大流跑一次。那么如今要改一条边的方向:假设要更改的边是走过的边,那么不会使走法添加,有能够还使路的条数降低,所以改的边一定不是满流的边(即走过的边)。如今要改变一条不在走过的边< u , v >变成<v , u>,使得能够增流,那么仅仅要从S沿着没有走过的边到 v 。再从u沿着没有走过的边 到 T。这样就能够使得路的条数增多。
那么这样我们就能够用BFS标记 SF[] 能从S点沿着最大流每条边的残流量>0的边走到的一些点V,再标记
TF[] 能从T点沿着最大流每条边的残流量==0的边走到一些点U(即表示:能从U沿着那些边走到T)。最后仅仅要枚举原来不在走过的边<u , v >,假设:SF[v]==1&&TF[u]==1则改变此边方向能够增流。方案数k+1。
最后的最多机器人数ans = maxflow + k>0 ? 1 : 0 。
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int
const int MAXN = 1010; //点的总数
const int MAXM = 40010; //边的总数
const int INF = 1<<30;
struct EDG{
int to,next;
captype cap;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可觉得是高度)点的个数
int dis[MAXN]; //每一个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN];
void init(){
eid=0;
memset(head,-1,sizeof(head));
}
//有向边 三个參数。无向边4个參数
void addEdg(int u,int v,captype c,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; head[u]=eid++;
edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包含源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0; //最大流
int u=sNode;
while(dis[sNode]<n){ //推断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].cap-=1;
edg[i^1].cap+=1; //可回流的边的流量
}
ans+=1;
u=sNode;
continue;
}
bool flag = false; //推断是否能从u点出发可往相邻点流
int v;
for(int i=cur[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//假设上面没有找到一个可流的相邻点。则改变出发点u的距离(也可觉得是高度)为相邻可流点的最小距离+1
int Mind= n;
for(int i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].cap>0 && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans; //当dis[u]这样的距离的点没有了,也就不可能从源点出发找到一条增广流路径
//由于汇点到当前点的距离仅仅有一种,那么从源点到汇点必定经过当前点。然而当前点又没能找到可流向的点,那么必定断流
dis[u]=Mind+1;//假设找到一个可流的相邻点。则距离为相邻点距离+1,假设找不到,则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^1].to; //退一条边
}
return ans;
}
bool flag[MAXM] , SF[MAXN] , TF[MAXN];
void bfs(int s ,bool flag)
{
queue<int>q;
int u , v;
q.push(s );
while(!q.empty())
{
u = q.front(); q.pop();
for(int i=head[u]; ~i ; i=edg[i].next)
{
v=edg[i].to;
if(flag)
{
if(SF[v]||!edg[i].cap)continue;
SF[v]=1;
q.push(v);
}
else{
if(TF[v]||!edg[i^1].cap)continue;
TF[v]=1;
q.push(v);
}
}
}
}
inline void scanf(int& num )
{
char ch;
while(ch=getchar())
{
if(ch>='0'&&ch<='9')break;
}
num = ch-'0';
while(ch=getchar())
{
if(ch<'0'||ch>'9')break;
num = num*10+ch-'0';
}
}
int main()
{
int n,m,vs , vt , u ,v;
while(scanf("%d%d%d%d",&n,&m,&vs,&vt)>0&&n+m+vs+vt!=0)
{
init();
for(int i=0; i<m; i++)
{
scanf(u);
scanf(v);
addEdg(u , v ,1);
}
memset(flag , 0 , (m+3)*sizeof(bool));
memset(SF,0,sizeof(SF));
memset(TF,0,sizeof(TF));
int ans , k=0 ;
ans = maxFlow_sap(vs , vt , n );
for(int i=0; i<m; i++)
if(edg[i<<1].cap==0)
flag[i]=1;
SF[vs ] =1; bfs(vs , 1);
TF[vt] = 1; bfs(vt , 0);
for(int i=0; i<m; i++)
if(!flag[i]){
v=edg[i<<1|1].to;
u=edg[i<<1].to;
if(SF[u]&&TF[v])
k++;
}
if(k) ans++;
printf("%d %d\n",ans , k);
}
}
|